
12th October 1992

Support Group Application Note

Number: 004

Issue: 1.10

Author:

Tube Application Note

Applicable

Hardware :

BBC B

BBC B+

BBC Master 128

Related

Application

Notes:

Copyright © Acorn Computers Limited 1992

Every effort has been made to ensure that the information in this leaflet is true and correct at

the time of printing. However, the products described in this leaflet are subject to continuous

development and improvements and Acorn Computers Limited reserves the right to change

its specifications at any time. Acorn Computers Limited cannot accept liability for any loss

or damage arising from the use of any information or particulars in this leaflet. ACORN,

ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited.

Support Group

Acorn Computers Limited

Acorn House

Vision Park

Histon

Cambridge CB4 4AE

Support Group Application Note No. 004, Issue 1.10 12th October 1992

Overview

One of the BBC Microcomputer's strengths lies in its sophisticated Operating System, the MOS. This

operating system has a very fast and flexible response to Interrupts, which allows the machine to take a

wide range of peripherals and handle them with ease. The TUBE is a fast bus interface through which

additional Co-processors (also called second processors) can be added. when a co-processor is connected to

the TUBE interface, the BBC Micro continues to look after all of the I/O processing, whilst the additional

co-processor now carries out the task of running the Language Application.

The Co-Processor

The co-processor can be based on any microprocessor chip, and can have any memory size that this chip

can address. Units already in existence include 64K RAM 6502, 1MBit 32016, 64K Z80 etc. You may

wonder why there is any point in adding a unit using a 6502 chip, the same series as the BBC Micro itself,

and with a RAM size the same as the Model B+. The reasons are twofold:

1) Speed - whilst the co-processor is carrying out the computational tasks of the Application program, the

BBC Micro itself can look after the screen display, printer, disc drive etc.

2) Memory - In the Model B or B+ with a Disc Filing System, the position of PAGE is typically &1900.

The application has to fit above this and below HIMEM. In the Model B, HIMEM moves down when a

high resolution screen display is selected further reducing the memory available. In the 6502 co-processor,

PAGE is typically at &800 and HIMEM is at &8000 regardless of Filing System and screen display mode.

The TUBE interface

The co-processor is connected to the TUBE connector on the BBC Micro via the TUBE cable. In the

system, the BBC Micro is referred to as the "host", and the co-processor as the "parasite". Within any co-

processor there is a custom chip, the TUBE ULA, which provides the actual communicating interface

between both processors. The processors are not synchronised with one another, and the ULA chip forms

effectively a set of pigeon holes through which each processor can leave information for the other to read

when it is ready.

For the TUBE interface to work, there has to be some machine code in both processors which looks after

the communicating protocols on both sides of the ULA. In the BBC Micro, this "host" code resides

typically in one of the sideways ROMs ie NFS 3.34, DNFS, 1770 DFS etc. In the co-processor, the

"parasite" code resides in a small ROM commonly called the "boot" ROM.

Software Compatibility

Applications software which has been written for the BBC Micro itself may not run on a 6502 co-processor

if it has not followed the rules for using the Tube interface. Applications writers may become over

familiar with the memory map in the BBC Micro and its operating system interface and "bypass" the

standard routines. This application will then almost certainly fail when it is run in the different memory

map of a co-processor and where not all of the assumed interfaces are available. In the following

sections of the Application Note, the various "legal" way of interfacing with the operating system will

be described. If properly implemented, the Application Program will then run in either the BBC

Micro or the 6502 co- processor, with no modification. If the communication techniques across the

Tube interface are also properly implemented then maximum advantage of the overall system speed can

be obtained without one processor waiting an unreasonable length of time for the other processor to

respond.
Support Group Application Note No. 004, Issue 1.10 2

Support Group Application Note No. 004, Issue 1.10 12th October 1992

The Load address used by filing systems contains a "high order" address which indicates which processor
memory map it is to be loaded into. For example, a load address of &FFxxxxxx indicates that the file should
be loaded into the I/O processor area. A load address other than &FFxxxxxx indicates that the parasite is the
destination. A file loaded under BASIC control will load into the current language processor regardless of
the file load address. This ability to force *LOADing of files into a particular processor can be used to
set up user machine code from a filing system into the I/O processor when the co-processor is in use.

The TUBE ULA

As stated previously, the ULA acts as a parallel interface between two asynchronous processor systems. It

consists of four byte-wide read-only registers and four byte-wide write-only registers. Eight bytes of

memory mapped I/O space are used to address these registers, four for the data registers and four for the

associated status registers.

Register number 1

I/O address Co-proc address
Status &FEE0 &FEF8 write/read (clears IRQ)

Data &FEE1 &FEF9 bit 7 - data available/IRQ
 bit 6 - not full

Parasite to Host: Carries the OSWRCH call. Data register is a FIFO that can handle a VDU command

length (10 bytes).

Host to Parasite: There is a 1 byte buffer. It is used to generate IRQs in the parasite from events in the

host.

Register number 2

I/O address Co-proc address
status &FEE2 &FEFA write/read

data &FEE3 &FEFB bit 7 - data available
 bit 6 - not full

Used to implement OS calls that take a long time or that cannot interrupt Host tasks. The parasite passes a

byte describing the required task. The two processors then exchange data until the task is complete. OS

calls handled through this register include: OSRDCH, OSCLI, OSBYTE, OSWORD, OSBPUT, OSBGET,

OSFIND, OSARGS, OSFILE, OSGBPB.

Register number 3

I/O address Co-proc address
status &FEE4 &FEFC write/read

data &FEE5 &FEFD bit 7 - data available/NMI
 bit 6 - not full

Used for the background task of fast data transfer between the two processors.

Support Group Application Note No. 004, Issue 1.10 3

OSWORD No. Params sent Params received

1 (&01) 0 5

2 (&02) 5 0

3 (&03) 0 5

4 (&04) 5 0

5 (&05) 2 5

6 (&06) 5 0

7 (&07) 8 0

8 (&08) 14 0

9 (&09) 4 5

10 (&0A) 1 9

11 (&0B) 1 5

12 (&0C) 5 0

13 (&0D) 0 8

14 (&0E) 8 25

15 (&0F) 25 1

16 (&10) 16 13

17 (&11) 13 13

18 (&12) 0 128

19 (&13) 8 8

20 (&14) 128 128

<128 (&80) 16 16

>127 (&7F) XY offset 0 XY offset 1 (ie in param block)

Support Group Application Note No. 004, Issue 1.10 12th October 1992

Register number 4

I/O address Co-proc address
status &FEE6 &FEFE write (sets IRQ)/read (clears IRQ)

data &FEE7 &FEFF bit 7 - data available/IRQ

 bit 6 - not full/IRQ

Used as the control channel for block transfers going through Register 3, and also the transfer register for

error strings from host to parasite. In both cases, the host interrupts the parasite by placing a byte into the

Register. In the former case it is a byte describing the required action, in the latter it is an error code.

Writing for compatibility

The applications software writer needs to know which operating system interfaces will work "across the

tube", and which will not. He will also need to know how to implement other techniques for those that

don't work.

Valid calls across the Tube: OSWRCH, OSBYTE (Y only returned for A>= &80), OSRDCH, OSCLI,

OSWORD, OSBPUT, OSBGET, OSFIND, OSFILE, OSARGS, OSGBPB.

Note:

a) OSBYTE calls have some restrictions in the co-processor ie:

&00-&7F - Only X (not Y) is sent and returned.

&82 - Always returns the parasite high order address (00 in both X and Y on the 6502).

&83 - Always returns bottom of user memory in the parasite (&0800 on the 6502).

&84 - Always returns top of user memory in the parasite (&8000 or &B800 on the 6502).

b) OSWORD call parameters sent and received across the Tube can be ascertained from the following table

Support Group Application Note No. 004, Issue 1.10 4

Support Group Application Note No. 004, Issue 1.10 12th October 1992

Note that second processors produced before the BBC Master transferred 16 bytes in each direction for
OSWORD 14 and 15, as indicated in earlier versions of this Application Note. Reading and writing the Real
Time Clock requires 25 bytes to be transferred.

Invalid calls across the Tube: OSRDRM/OSRDSC, OSWRSC

Other invalid actions include:

Peeking/Poking memory unless the location is guaranteed to be the same in both memory maps.

Directly addressing memory mapped I/O locations such as VIA.

Directly address &F4, the ROM latch variable.

Keeping data areas in &900, &A00, &B00 and &C00. These are above PAGE in the parasite.

Using pages 4, 5, 6 and 7 in the I/O processor, normally reserved for the current language. These are used

by the Tube code.

Using the two pages above normal PAGE position in the I/O processor. These are used for font explosion

when a parasite processor is being used. Therefore stay above &2100, if PAGE is normally &1900, for user

machine code.

Valid communicating techniques:

OSBYTE 146 - Read from FRED (1MHz bus).

OSBYTE 147 - Write to FRED (1MHz bus).

OSBYTE 148 - Read from JIM (IMHz bus).

OSBYTE 149 - Write to JIM (1MHz bus).

OSBYTE 150 - Read from SHEILA (memory mapped I/O).

OSBYTE 151 - Write to SHEILA (memory mapped I/O).

OSBYTE 157 - Fast Tube BPUT.

OSBYTE 234 - Read Tube presence.

OSWORD 5 - Read from I/O processor (transfers 1 byte).

OSWORD 6 - Write to I/O processor (transfers 1 byte).

OSWORD 224 to 225 - Passed through USERV vector (Can transfer up to 128 bytes either way across the

Tube).

Some typical examples:

a) Moving a few bytes: Use OSWORD 5 or 6 from the co-processor the appropriate number of times.

b) Moving up to 124 bytes: OSWORD 5 or 6 is typically too slow for more than a few bytes, hence the

following is a recommended approach for the transfers to or from the co-processor and initiated by the co-

processor:

Use OSWORDS in the range &E0(224) to &FF(255). These "unknown" OSWORDS are passed through

the USERV vector at &200 in the I/O processor. Thus to transfer 64 bytes from the co-processor to the I/O

processor we select, say OSWORD &E0, with the following parameter block:

XY + 0 68 bytes to transmit

1 0 bytes to receive

2 LO Lo byte of destination in I/O processor

3 HI Hi byte of destination in I/O processor

4 x 1st byte of 64

| | |

68 x 64th byte of 64

Support Group Application Note No. 004, Issue 1.10 5

Support Group Application Note No. 004, Issue 1.10

12th October 1992

To transmit 64 bytes from the I/O processor to the co-processor, we select, say OSWORD &E1, with the

following parameter block:

XY + 0

4

bytes to transmit

1 68 bytes to receive

2 LO Lo byte of source location in I/O processor

3 HI Hi byte of source location in I/O processor

In practice you would intercept the USERV vector in the I/O processor (at &200,1) for the first run of the

program. When &E0 is intercepted, the data from the parameter block already set up is ready to be moved

across the Tube by the co-processor Tube code into the I/O processor location given in the parameter block.

Control is returned to the program. When &E1 is intercepted, the data is taken from the address given in

the parameter block and placed in the parameter block starting at address offset 4. Following this, the Tube

code will copy the data across the Tube into the co-processor into the original parameter block location.

c) Moving large quantities of data: To move large quantities of data, for example a complete screen update,

the fast Tube BPUT OSBYTE call is used. Prior to the call, some machine code is placed in the I/O

processor ready to handle the data as it arrives across the Tube from the co-processor. When data is ready

to be moved across the Tube, an OSBYTE &9D (157) is made to initiate the users code to in the I/O

processor. The data is moved through Tube register 1 and handled by the user code on the other side. Note

that all OSBYTE calls are vectored through the BYTEV vector at &20A,B in the I/O processor, and this

vector has to be intercepted to detect an OSBYTE &9D call and pick up the X and Y parameters to be used

by the user's code. The advantage of OSBYTE &9D over other OSBYTE calls is that after the X and Y

parameters have been sent across the Tube, control is immediately returned to the parasite. no parameters

are returned.

Support Group Application Note No. 004, Issue 1.10 6

Support Group Application Note No. 004, Issue 1.10 12th October 1992

The Correct Use of Tubes

The Tube (c)Acorn Computers etc. is both a custom chip and a set of protocols. The protocols control the

flow of control and data between a second processor and the BBC machine to which it is attached. Clearly

the implementation of these protocols in the second processor is different with different processors and

operating environments, so this document is not concerned with second processor code. This document

does however please constraints on the performance of second processors, as the description of the Tube

use on the BBC machine side includes expected response times so that the BBC machine user need not poll

the hardware.

Conventions.

We assume you know about the 6502, and a bit about BBC machines. Hexadecimal numbers are written

&<Hex digit> (<Hex digit>^) eg &FEE5, &0406. Decimal numbers are just written. Host means BBC

computer, parasite means second processor.

1. Claiming the Tube

Before you can use the Tube, you must claim it successfully. This is to prevent reentrancy problems with

background and foreground tasks trying to use the system at the same time, for instance during an Econet

(c) peek. Of course, before attempting to use the Tube system you must be certain that the Tube is present,

by using OSBYTE call &EA with Y=&FF, X=0. The answer, in X, is 0 if there is no Tube or &FF if the

Tube system is present. Only if the Tube is present may you call the Tube code entry point, as otherwise it

is language workspace, eg BASIC's variables.

To claim the Tube you must call the Tube code entry point at &0406 with a reason code of &C0+x in the

accumulator. x is an ID code which should identify you uniquely. This call return with the carry set if the

claim was successful, carry clear if it failed. Failure implies that some background task is using the Tube,

so the usual course of action is to keep trying until you succeed. For example, the DFS uses the following

subroutine (MASM format)

CLATUB PHA ; Save A, as it happens

CLATBO LDAIM &C1 ; My magic number

JSR &0406 ; Tube code entry point

BCC CLATBO ; If it failed try again.

PLA ; Recover A

RTS

Some other magic numbers which have been allocated are:

&C0 - Cassette filing system

&C1 - Disc filing system - DFS

&C2 - Econet - Low level primitives

&C3 - Econet filing system

&C4 - ADFS

&C5 - Teletext

&C6 - Acorn in-house Terminal - HOSTFS (?)

&C7 - VFS - video discs

&C8 - 64/128k beebs sideways RAM utils

&C9 - Z80 chaps, CP/M

Support Group Application Note No. 004, Issue 1.10 7

Support Group Application Note No. 004, Issue 1.10 12th October 1992

::

&CF - IEEEFS - also used by Acacia RAM FS and by user applications

&D6 - HADFS (not allocated by us!)

The ID code is in fact a six bit quantity, so you should use:

LDAIM &CO+MYID

JSR &0406

in your code.

When you have finished using the Tube you must release it so that other users may claim it. So that another

user cannot release the Tube when you claimed it, you must call the entry point with &80+x in the

accumulator, where x is the same magic number you used when claiming. For example DFS uses the

following subroutines.... (MASM format):

RELTUB PHA ; Save A

LDAIM &81 ; Magic number

JSR &0406 ; Tube entry point

PLA ; Get A

RTS

2) Data Transfers/Execution

The same entry point is used to initiate a data transfer through the Tube. The type of transfer is selected by

means of a reason code in the accumulator. You must also tell the system where in the second processor's

memory space to start the transfer. You must place the address of the first byte to the moved (source or

destination, depending on the transfer type, or the Execute address if you are forcing execution in the

parasite) in four bytes of memory in the BBC machine, low byte first as usual, and put the low byte of the

address of these four bytes in X and the high byte of the address of the four bytes in Y. So . .

Four byte address in BBC m/c

YX ---> : Low byte : \
 : MidLo byte : > - - - - - -> data byte in second processor.

: MidHi byte : /

: Hi byte : /

Reason codes for data transfers are as follows:

RC Description Initial delay Delay per byte

0 Multi byte transfer, parasite to host 24 uS 24 uS

1 Multi byte transfer, host to parasite 0 24 uS

These transfer any number of bytes in

the appropriate direction - terminate by

releasing the Tube or recommanding

for another protocol.

2 Multi pairs of bytes transfer, parasite

to host 26 uS 26 uS/pair

3 Multi paris of bytes transfer, host to

parasite 0 26 uS/pair

These transfer an even number of bytes

in the appropriate direction, faster than

protocols 0 and 1 - terminate by
Support Group Application Note No. 004, Issue 1.10 8

Support Group Application Note No. 004, Issue 1.10 12th October 1992

releasing the Tube or recommanding

for another protocol.

4 Execute - Execution starts in the parasite at

the address pointed to by YX. This call

contains an implied release and does not

return to you.

5 Reserved - this call is used in handling OS

calls which are passed across the Tube.

6 256 byte transfer, parasite to host 19 uS 10 uS/byte

7 256 byte transfer, host to parasite 0 10 uS/byte

These transfer exactly and only 256 bytes

only after 256 bytes are transferred may

the system be recommanded or released.

Having commanded the system, you may now transfer the data. The initial delay is the time you must wait

after control returns to you before you transfer the first byte of data. The port used to transfer the data is

memory mapped into the BBC machine at location &FEE5 (another magic number !), so either do an LDA

&FEE5 for parasite to host or STA &FEE5 for host to parasite to transfer the data.

eg To transfer 256 bytes of data into an arbitrary page in the BBC machine memory from the parasite.

; Set up page zero locations &80, &81 to point to the destination page

; Set up locations &3000, &3001, &3002, &3003 to contain the source address in the parasite

CLAIM LDAIM &CO+&10 ; Say my ID is 16

JSR &0406 ; Claim the Tube

BCC CLAIM

LDXIM &00 ; Lo byte of &3000

LDYIM &30 ; Hi byte of &3000

LDAIM 6 ; P -> H, 256 bytes

JSR &0406

JSR ANRTS ; 6 uS delay

JSR ANRTS ; 12 uS delay

JSR ANRTS ; 18 uS delay

 LDYIM 0 ; so the initial delay in 19 uS

LOOP

LDA &FEE5

; Get it from the port (2 uS = 2)
STAIY &80 ; Put the data byte (+3 uS = 5)

NOP ; (+1 uS = 6)

NOP ; (+1 uS = 7)
NOP ; (+1 uS = 8)

INY ; (+1 uS = 9)

BNE LOOP ; Next data byte (+1.5 uS = 10.5 uS/byte)

LDAIM &80+&10 ; Release code + My ID

JSR &0406 ; Release the Tube
Support Group Application Note No. 004, Issue 1.10 9

Support Group Application Note No. 004, Issue 1.10 12th October 1992

:

:

ANRTS RTS

Execute:

Calling the Tube code with A=4 is used to force execution to start in the second processor at a location

defined by the parasite. This is used by filing systems when *RUNning a file. The filing system claims the

tube, loads the program code into the second processor RAM and then uses call 4 with YX pointing to the

exec address of the file to start execution of the code.

3) OSWORD calls

These are a few things you should know if you are going to use your own OSWORD calls to pass control/

data back and forth across the Tube.

Low numbered OSWORD calls:

These have variable numbers of parameters both in and out. In practice, for all OSWORD calls with

A<128, 16 bytes are passed each way. This covers all the Acorn assigned calls and allows them to be made

transparently from either side of the Tube.

High numbered OSWORD calls:

OSWORD calls with A>128 have a special format to allow a variable number of parameters to be passed

each way.

YX ----> n (byte)

YX+1 m (byte)

YX+2 data

when the call is made in the second processor, n bytes (inclusive of the bytes containing n and m) are

copied into the I/O processor, then the call is made there with YX pointing to the copy. When the call

returns, m bytes (inclusive again) are copied back into the second processor. 2 <= n,m <= 128, so you can

pass at most 126 bytes of data back and forth. eg if you wish to pass a 4 byte record, the first byte of which

is a status return, use:

YX -> 6 ; 6 bytes to the I/O processor

3 ; 3 bytes returned

data0

data1

data2

data3

Support Group Application Note No. 004, Issue 1.10 10

3

Support Group Application Note No. 004, Issue 1.10 12th October 1992

TUBE AC Electrical Specification

0 2

R/W

MRDS

NWDS

A0-2

1

2 10

2

2

4
3

4

5 6

7 8

D0-7

11
4 11 4

CS

NB On the host side, 02 is the timing reference and R/W gives the direction of transfer. On the parasite
side, the timing and direction are implied by MRDS or NWDS.

 MIN MAX

1) R/W set up to 02 35 ns

2) timing strobe pulse width 110 ns

3) address set up time 35 ns

4) address and chip select hold times 10 ns

5) data out delay time 70 ns

6) data out hold time 20 ns

7) data in set up time 50 ns

8) data in hold time 20 ns

9) R/W hold time 10 ns

10) cycle time 250 ns

11) CS set up time 20 ns

The chip must operate within this specification, as this meets 4MHz 6502 requirements.

All other timings, such as across tube transfer times, are non critical, but are expected to be at

most 1 or 2 microseconds

Interrupt Operation

The tube has three processor interrupt outputs, two to the parasite (PIRQ & PNMI) and one to the host

(HIRQ). Each line has an enable bit, and PIRQ has two, one for each possible interrupt source. The

interrupt lines go active (low) under the following conditions:

HIRQ Q = 1 and register 4 has data available in the parasite to host latch

Support Group Application Note No. 004, Issue 1.10 11

Support Group Application Note No. 004, Issue 1.10 12th October 1992

PIRQ either: I = 1 and register 1 has data available in the host to parasite latch

or: J = 1 and register 4 has data available in the host to parasite latch

(or both)

PNMI either: M = 1 V = 0 1 or 2 bytes in host to parasite register 3 FIFO or 0 bytes in parasite

to host register 3 FIFO (this allows single byte transfers across

register 3)

or: M = 1 V = 1 2 bytes in host to parasite register 3 FIFO or 0 bytes in parasite to host

register 3 FIFO. (this allows two byte transfers across register 3)

(or both)

In all cases the interrupt condition is cleared by removing the cause; in the case of HIRQ or PIRQ reading

the data from the appropriate register, in the case of PNMI reading or writing data to or from register 3 as

appropriate.

Reset Operation

An active (low) signal on HRST initialises the tube to a known state, and automatically produces a PRST

active output to reset the parasite system.

The state is T, P, V, M, J, I, Q are all set to zero.

All the registers are purged except that register 3 has one valid but insignificant byte in the parasite to host

FIFO (this is to prevent an immediate PNMI state after PRST).

The T control bit allows the processor to reset the Tube to the above state with the exception that P, V, M, J,

I & Q are unaffected, and P allows separate reset of the parasite processor by the host under software

control. These resets are activated by setting the respective flags, and they must be cleared before the reset

device will operate again, unless of course HRST is activated in the mean time.

DMA Operation

The DRQ pin (active state = 1) may be used to request a DMA transfer - when M = 1 DRQ will have the

opposite value to PNMI, and depends on V in exactly the same way (see description of interrupt

operation). DACK then selects register 3 independently of PA0-2 and PCS, and forces a read cycle if

PNWDS is active or a write cycle if PNRDS is active (inverse sense of PNWDS and PNRDS so that the

DMA system can read the data from memory an write it into the Tube in one cycle).

Control and Status Flags

In the above table the positions in the memory map of the various status and control bits are shown, and

their significance is explained below.

A1, A2, A3, A4 = 1 data available in register 1, 2, 3, 4

F1, F2, F3, F4 = 1 register 1, 2, 3, 4 not full

N =1 register 3 action required (if M = 1 then PNMI active)

The data available flag signifies data available to the processor reading the flag, whereas the not full flag

shows that the register from the processor reading the flag has space for more data.

Support Group Application Note No. 004, Issue 1.10 12

Support Group Application Note No. 004, Issue 1.10 12th October 1992

In the case of a simple latch such as register 2, A2 on the host side and F2 on the parasite side will always

have the opposite value. In the case of the FIFO registers, data is available when there is one of more valid

byte in the register, but the not full flag only becomes inactive when the entire register is loaded.

All registers are simple latches except register 3, which has 2 byte FIFOs in each direction, and register 1,

which has a ten or more byte FIFO from the parasite to the host. The host to parasite part of register 1 is a

simple latch.

Q = 1 enable HIRQ from register 4

I = 1 enable PIRQ from register 1

J = 1 enable PIRQ from register 4

M = 1 enable PNMI from register 3

V = 1 two byte operation of register 3

P = 1 activate PRST

T = 1 clear all Tube registers

S = 1 set control flag(s) indicated by mask

These flags are set or cleared according to the value of S, eg writing 92 (hex) to address 0 will set V and I to

1 but not affect the other flags, whereas 12 (hex) would clear V and I without changing the other flags. All

flags except T are read out directly as the least significant 6 bits from address 0.

Register 3 Operation

Register 3 is intended to enable high speed transfers of large blocks of data across the tube. It can operate

in one or two byte mode, depending on the V flag. In one byte mode the status bits make each FIFO appear

to be a single byte latch - after one byte is written the register appears to be full. In two byte mode the data

available flag will only be asserted when two bytes have been entered, and the not full flag will only be

asserted when both bytes have been removed. Thus data available going active means that two bytes are

available, but it will remain active until both bytes have been removed. Not full going active means that the

register is empty, but it will remain active until both bytes have been entered. PNMI, N and DRQ also

remain active until the full two byte operation is completed.

General Description

The Tube is a completely asynchronous parallel interface between two processor systems. To each system

it resembles a conventional peripheral device, occupying 8 bytes of memory or I/O space. Within that space

are four byte wide read only latches, and four byte wide write only latches, plus associated control flags.

Some of the latches are just that - data written in one side is read out of the other on the next read to that

address, but some are in fact FIFO buffers, which store two or more bytes to be read out in the order they

were put in. Information is stored in the Tube until removed by the receiving processor, thus allowing

completely asynchronous operation of the two systems. Messages and data are passed to and fro through

the various registers according to carefully designed software protocols, and proper allocation of the

registers to specific tasks allows both systems to operate with the minimum waiting time.

Support Group Application Note No. 004, Issue 1.10 13

0 0 0 1 A1

0 0 0 0 S

Support Group Application Note No. 004, Issue 1.10 12th October 1992

Register Organisation

A2 A1 A0 R/W or NWDS D7 Host DO D7 Parasite DO

F1 P V M J I Q A1 F1 P V M J I Q
0 0 1 1 read reg 1 read reg 1 (1)

0 1 0 1 A2 F2 x x x x x x A2 F2 x x x x x x

0 1 1 1 read reg 2 read reg 2

1 0 0 1 A3 F3 x x x x x x N F3 x x x x x x

1 0 1 1 read reg 3 (2) read reg 3 (3)

1 1 0 1 A4 F4 x x x x x x A4 F4 x x x x x x

1 1 1 1 read reg 4 (4) read reg 4 (5)

T P V M K I Q x x x x x x x x
0 0 1 0 write reg 1 (6) write reg 1

0 1 0 0 x x x x x x x x x x x x x x x x

0 1 1 0 write reg 2 write reg 2

1 0 0 0 x x x x x x x x x x x x x x x x
1 0 1 0 write reg 3 (7) write reg 3

1 1 0 0 x x x x x x x x x x x x x x x x

1 1 1 0 write reg 4 (9) write reg 4 (10)

Notes: 1) Will clear PIRQ if register 1 was the source

2) May activate PNMI depending on M and V flags

3) May clear PNMI (see description of interrupt operation)

4) Will clear HIRQ if it was active

5) Will clear PIRQ if register 4 was the source

6) Will activate PIRQ if I = 1

7) May activate PNMI depending on M and V flags

8) May clear PNMI

9) Will activate PIRQ is J = 1

10) Will activate HIRQ if Q = 1

11) All bits marked x are insignificant and will read out as 1

Support Group Application Note No. 004, Issue 1.10 14

O

O

O

Support Group Application Note No. 004, Issue 1.10 12th October 1992

TUBE Logical Definition
VCCI VCC2 CND

HAO

HA1

PAO

PA1

HOST (I/O)

processor system

HA2

HCS

HDO

PA2

O PCS

PDO

PARASITE (2nd)

processor system

HD7

H02

HR/W

HRST O

HIRQ

PD7

O PNRDS

O PNWDS

O PRST

O PNMI

O PIRQ

DRQ DACR

Description of pins:

DMA controller on 2nd processor system

Power supply GND 0v reference

 VCC1 Main +5v supply

 VCC2 Secondary supply - may not be used. - must be derived from
 +5v through dropping resistor.

Data buses

HD0-7

8 bit data bus to host processor

PD0-7 parasite processor

Address signals HA0-2/PA0-2 3 register select lines from host/parasite address
 bus

 HCS/PCS chip select line from host/parasite address

 decoding

Timing signals H0
2

Host processor clock-high level signifies valid address bus

 HR/W Host read-write line-controls direction of information flow on

 HD0-7

 PNRDS Parasite read strobe (low level active)

 PNWDS Parasite write strobe (low level active)

Interrupt lines

HRST

Clears all internal latches and initialises tube to known state -

 also generates PRST

 HIRQ Interrupt to host processor

 PRST Reset line to parasite processor

 PNMI Non-maskable interrupt to parasite

 PIRQ Interrupt to parasite

DMA lines

DRQ

Request for DMA transfer

 DACK DMA acknowledge from DMA controller

Support Group Application Note No. 004, Issue 1.10 15

Flags

1
byte

Support Group Application Note No. 004, Issue 1.10 12th October 1992

Schematic diagram of Tube registers

Write address 0

Read address 0

STATUS REGISTER

Read address 0

Read address 0

Write address 1

Read address 2

Write address 3

Read address 4

Write address 5

Not full

Not full

Not full

REGISTER 1

1
byte

REGISTER 2

1
byte

REGISTER 3

2 byte
FIFO

Data available

Data available

Action required

Read address 0

Read address 1

Read address 2

Read address 3

Read address 4

Read address 5

Read address 6

Write address 7

HOST

Read address 0

Read address 1

REGISTER 4
Not full Data available

1
byte

REGISTER 1

Data available Not full

24 byte FIFO

Read address 6

Read address 7

PARASITE

Read address 0

Write address 1

Read address 2

Read address 3

Read address 4

Read address 5

Data available

Data available

REGISTER 2

1
byte

REGISTER 3

2 byte
FIFO

Not full

Not full

Read address 2

Write address 3

Read address 4

Write address 5

Read address 6

Read address 7

REGISTER 4
Data available Not full

1
byte

Read address 6

Write address 7

The following tables show the relative address and type of each register in the Tube, firstly for the Host

system, and secondly for the parasite system (second processor).

Table 1 Host System Registers

Address Read

000 Status flags and Register 1 flags

001 Register 1 (24 byte FIFO read only)

010 Register 2 flags

011 Register 2 (1 byte read only)

100 Register 3 flags

101 Register 3 (2 byte FIFO only)

110 Register 4 flags

111 Register 4 (1byte read only)

Support Group Application Note No. 004, Issue 1.10 16

Support Group Application Note No. 004, Issue 1.10 12th October 1992

Address Write

000 Status flags

001 Register 1 (1 byte write only)

010 - - - - - -

011 Register 2 (1 byte write only)

100 - - - - - -

101 Register 3 (2 byte FIFO write only)

110 - - - - - -

111 Register 4 (1 byte write only)

Table 2 Parasite System Registers

Address Read

000 Status flags and Register 1 flags A1 F1 P V M J I Q

001 Register 1 (1 byte read only)

010 Register 2 flags

011 Register 2 (1 byte read only)

100 Register 3 flags

101 Register 3 (2 byte FIFO read only)

110 Register 4 flags

111 Register 4 (1 byte read only)

Address Write

000 - - - - - -

001 Register 1 (24 byte FIFO write only)

010 - - - - - -

011 Register 2 (1 byte write only)

100 - - - - - -

101 Register 3 (2 byte FIFO write only)

110 - - - - - -

111 Register 4 (1 byte write only)

Support Group Application Note No. 004, Issue 1.10 17

Support Group Application Note No. 004, Issue 1.10 12th October 1992

INTERFACE SPECIFICATION

Title: Acorn Tube Software Protocol Specification

Reference: SP0, 989, 900I01

Issue No: 08

Author:

Date: 12. 10. 1992

Design Authority:

NOTE: All enquiries and requests for changes to this specification must be directed to the Design

Authority.

DISTRIBUTION: ACORN H Fisher Business Systems Dept
 A Hinchley Communication Systems Dept
 J B Tansley Engineering Systems Dept
 M Jenkin Engineering Systems Dept
 A McKernan Personal Systems Dept
 C B Turner R & D Services Dept

EXTERNAL

F Cockshott

Glasgow Univ.
 C Hall TDI

 J Wein Digital Research

(C) Copyright Acorn Computers Limited 1992

Interface Specification Ref: SOtube8

Support Group Application Note No. 004, Issue 1.10 18

Support Group Application Note No. 004, Issue 1.10 12th October 1992

1 Change History

31 Jan 1984 : Initial issue

9 Feb 1984 : Correct R4 protocols, Minor clarifications

24 Feb 1984 : Correct R4 type 0-3 protocols

6 Aug 1984 : OSWORD Parameter Counts corrected

12 Oct 1984 : Document restructure

25 Oct 1984 : Distribution List change

20 Nov 1984 : Correction of typographical errors

27 May 1986 : Addition of overview and timing details

12 Oct 1992 : OSWORD 14, 15 Parameter Counts corrected

2 Introduction

The Tube allows two processors to communicate using software protocols, it provides single or multibyte

buffering and the handshake signals required.

This document describes the Tube protocols from the point of view of the second processor. In this

document the following conventions are observed:

Hexadecimal numbers are preceded by &

When bit are numbered within a byte, bit 0 is the least significant bit

'Host' refers to the BBC computer

'Parasite' refers to the second processor

3 Overview

The objective of a host - parasite tube configuration is to allow th parasite to execute user programs, using

the host system as a servant to take care of low level I/O tasks. In order to use the host system as a servant,

the parasite must be able to control suitable routines in the host system. The standard host tube code allows

the parasite to make use of the standard BBC operating system calls. Thus any parasite system, on

initialisation, must be capable of using these standard OS routines through the tube, and may or may not

load new routines into the host at a later stage of start up. This document therefore defines the protocols

necessary for making use of these standard OS routines and coping with the results of issuing commands -

for example loading files from disc across the tube into the parasite system. A parasite system also has to

be able to cope with the needs of external systems such as a network - which may want to peek or

poke memory in the parasite system.

The system calls form three main categories:

a) Calls on which the host system acts and makes no return of information to the parasite.

b) Calls on which the host acts and then returns a few parameters to the parasite in a non time critical

fashion.

c) Calls on which the host acts and then returns or reads parameters or blocks of data in time critical

fashions.

An example of category c is a load of a file from disc. The process is started by the parasite issuing an

appropriate filing system call. The filing system response will result in bytes physically read from the disc

having to be passed straight across the tube to the parasite.

Categories a and b are dealt with by th host and parasite using registers 1 in the parasite to host direction

and 2 in both directions. Register 1 in the parasite to host direction is used for OSWRCH calls (fitting
Support Group Application Note No. 004, Issue 1.10 19

Support Group Application Note No. 004, Issue 1.10 12th October 1992

category a). These types of transfer are made by each processor polling the relevant register status until it

reaches the correct state for reading or writing. When it is not busy performing tasks, the host processor

polls registers R1STAT and R2STAT, waiting for commands. Filing system calls (category c) are made

with this type of transfer through register 2, but any time critical resulting transfer occurs under interrupt.

The 'Non Interrupt Protocols' section of this document describes in detail the protocols for these types of

transfer,

Time critical transfers use registers 1 or 4 in the host to parasite direction to generate IRQs in the parasite

and reading or writing of register 3 by the host to generate NMIs or DMA requests in the parasite. The

tube does not cause interrupts in the host system, nor does the host system poll tube registers during time

critical block transfers such as file loading/saving. During time critical block transfers, the host processor

simply reads from or writes to register R3DATA at defined rates. Each read or write generates an NMI

or DMA request in the parasite system, and the parasite must service this interrupt appropriately in time

for the next interrupt. Some transfers also occur without NMIs or DMAs through register 3. The

'Interrupt Driven Operations' section of this document describes in detail the protocols for these types of

transfer.

4 Hardware Structure

The Tube hardware provides 4 independent bi-directional communication paths. Each consists of a one

byte control register and a one byte data register (which may have multibyte buffering). The characteristics

of each register set are described below, in the descriptions RnSTAT refers to status register n and

RnDATA refers to its corresponding data register.

4.1 Register set 1

R1DATA

write

read (reading clears IRQ)

R1STAT

bit 7 data available/IRQ

bit 6 not full

In the parasite to host direction this register set is used for the OSWRCH operating system call. The data

register is a FIFO big enough to enable the longest VDU command to reside within it - thus increasing the

chance that the host and parasite will achieve parallel execution.

In the host to parasite direction the data register provides a 1 byte buffer. When the host writes to it an IRQ

is generated to the parasite. It is used to pass on event interrupts, such as a keypress interrupt, and the

escape operation.

4.2 Register set 2

R2DATA

write

read

R2STAT

bit 7 data available

bit 6 not full
Support Group Application Note No. 004, Issue 1.10 20

Support Group Application Note No. 004, Issue 1.10 12th October 1992

This register set is used to implement long (in machine time used) OS calls, or those which (eg RDCH)

cannot interrupt the WRCH host background task - in fact, any call apart from OSWRCH. The parasite

passes a byte to describe the required action. The two machines then co-operate in passing data across

R2DATA until the job is done.

4.3 Register set 3

R3DATA

write

read

R3STAT

bit 7 data available/nmi

bit 6 not full

R3DATA is programmable (from the Host) to be either a 1 or 2 byte FIFO. If set as a 2 byte FIFO, both

bytes have to be written to or read from to cause or clear a parasite NMI. Register 3 can be programmed by

the host not to cause parasite NMIs.

This register set is used for the background task of block data transfer between the two machines (of

register set 4). For higher performance applications this register may actually interface to a DMA

controller.

4.4 Register set 4

R4DATA

write (writing sets IRQ)

read (reading clears IRQ)

R4STAT

bit 7 data available/IRQ

bit 6 not full/IRQ

This register set is used as a control channel for block transfers carried out across R3. The host interrupts

the second processor by writing a byte describing the required action into R4DATA. The two machines

then co-operate in passing data across register 4 until removal of a synchronisation byte by the parasite

signals starting of transfers through register 3.

The register set is also used to initiate the passing of an error string from host to parasite. the host interrupts

the parasite by writing an error code into R4DATA, the two machines then cooperate in passing the error

string across R2DATA.

5 Software Protocols

Notes:

The BBC machine operates by polling the tube register for work.

In all the transactions which may generate errors it is important to realist that if the error is reported by the

BBC machine under interrupt (ie it was generated by a 6502 BRK sequence), the protocol which generated

the error is abandoned.

Support Group Application Note No. 004, Issue 1.10 21

Support Group Application Note No. 004, Issue 1.10 12th October 1992

5.1 Non Interrupt Protocols

OSWRCH - Wait until R1DATA not full, write character into R1DATA.

OSRDCH - Wait until R2DATA not full, write RDCHNO (=&00) to R2DATA.

Wait for data in R2DATA, top bit of R2DATA is 6502 C_bit (validity bit).

Wait for data in R2DATA, R2DATA is 6502 A register (character read).

OSCLI - Wait until R2DATA not full, write CLINO (=&02) to R2DATA.

FOR all characters in the command string (including terminating <cr>)

DO [

Wait until R2DATA not full, write character to R2DATA

]

Wait for data in R2DATA and read it.

IF this byte =&80 then code has been loaded into the second processor store as a result of the command and

it should be entered at the address given by the last R4 protocol type 4 address.

OSBYTE - IF osbyteno < &80

THEN [

Wait until R2DATA not full, write SBYTNo (=&04) to R2DATA

Wait until R2DATA not full, write parameter for 6502_X to R2DATA

Wait until R2DATA not full, write osbyteno to R2DATA

Wait for data in R2DATA, read R2DATA which is 6502_X register

]

ELSEIF osbyteno = &82 THEN [result is machine high order address]

ELSEIF osbyteno = &83 THEN [result is low memory value]

ELSEIF osbyteno = &84 THEN [result is high memory value]

ELSE [

Wait until R2DATA not full, write BYTENO (=&06) to R2DATA

Wait until R2DATA not full, write parameter for 6502_X to R2DATA

Wait until R2DATA not full, write parameter for 6502_Y to R2DATA

Wait until R2DATA not full, write osbyteno to R2DATA

IF osbyteno=&9D THEN RETURN from protocol (no reply)

Wait for data in R2DATA, bit 7 of byte read is from 6502_C

Wait for data in R2DATA, byte read is 6502_Y

Wait for data in R2DATA, byte read is 6502_X

]

OSWORD - IF oswordno = &00

THEN [; Doing readline

Wait until R2DATA not full, write RDLNNO (=&0A) to R2DATA

Wait until R2DATA not full, write upper bound char to R2DATA

Wait until R2DATA not full, write lower bound char to R2DATA

Wait until R2DATA not full, write length allowed to R2DATA

Wait until R2DATA not full, write &07 to R2DATA

Wait until R2DATA not full, write &00 to R2DATA

Wait for data in register2 -> response

IF response >&7F

THEN [
Support Group Application Note No. 004, Issue 1.10 22

Support Group Application Note No. 004, Issue 1.10 12th October 1992

; escape was pressed on input

RETURN from protocol

]

Read a <cr> terminated string from R2DATA

]

ELSE [

Wait until R2DATA not full, write WORDNO (=&08) to R2DATA

Wait until R2DATA not full, write oswordno to R2DATA

Wait until R2DATA not full, write #params to send to R2DATA

Write parameter block to R2DATA, last byte first

Wait until R2DATA not full, write #params to recv to R2DATA

Read bytes back from R2DATA into parameter block, last byte first

]

The number of parameters to send/receive is determined by:

IF oswordno<&15

THEN [Determine number of parameters from following tables

OSWORD number Parameters to send Parameters to receive
 1 0 5
 2 5 0
 3 0 5
 4 5 0
 5 2 5
 6 5 0
 7 8 0
 8 14 0
 9 4 5
 10 1 9

 11 1 5

 12 5 0

 13 0 8

 14 8 25

 15 25 1

 16 16 13

 17 13 13

 18 0 128
 19 8 8

 20 128 128

]

ELSEIF oswordno <&80

THEN [

parameters to send=16

parameters to receive=16

]

ELSE [

parameters determined in call specific manner

(eg by embedding in transfer block)

]

Support Group Application Note No. 004, Issue 1.10 23

Support Group Application Note No. 004, Issue 1.10 12th October 1992

OSBPUT - Wait until R2DATA not full, write BPUTNO (=&10) to R2DATA

Wait until R2DATA not full, Y to R2DATA (file handle)

Wait until R2DATA not full, A to R2DATA (byte to write)

Wait for data from R2DATA, discard it

OSBGET - Wait until R2DATA not full, write BGETNO (=&0E) to R2DATA

Wait until R2DATA not full, write file handle to R2DATA

Wait for data in R2DATA, top bit of byte is 6502_C (validity bit)

Wait for data in R2DATA, read R2DATA which is byte read from file

OSFIND - Wait until R2DATA not full, write FINDNO (=&12) to R2DATA

Wait until R2DATA not full, write type of open to R2DATA

IF type=0

THEN [

Wait until R2DATA not full, write file handle to R2DATA

Wait for data in R2DATA, read result

]

ELSE [

Wait until R2DATA not full, write file name string to R2DATA

(including terminating <cr>)

Wait for data in R2DATA, read handle from R2DATA

]

OSARGS - Wait until R2DATA not full, write ARGSNO (=&0C) to R2DATA

Wait until R2DATA not full, write file handle to R2DATA

Waiting for R2DATA not full,

[write 4 bytes osarg_data to R2DATA (ms byte first)]

Wait until R2DATA not full, write operation code to R2DATA

Wait for data in R2DATA, read 6502_A from R2DATA

Waiting for R2DATA data,

[read 4 bytes osarg_data from R2DATA (ms byte first)]

Note: osarg_data is the file sequential pointer or length depending on the type of OSARG call.

OSFILE - Wait until R2DATA not full, write FILENO (=&14) to R2DATA

Waiting for R2DATA not full,

[write 16 byte OSFILE control block to R2DATA]

(last byte of block is written first)

Waiting for R2DATA not full, write filename to R2DATA including terminating <cr>

Wait until R2DATA not full, write type of transfer to R2DATA

(Any transfer is completed under interrupt using R3, R4)

Wait for data in R2DATA, read R2DATA AND &7F = object type

Waiting for data in R2DATA,

[read back 16 byte control block from R2DATA]

(last byte of block is read first)

Note: The 16 byte control block has format:

Support Group Application Note No. 004, Issue 1.10 24

Load address

Execution address

Data start address or Length *

End address or attributes *

Support Group Application Note No. 004, Issue 1.10 12th October 1992

0

4

8

12

* The contents of these fields depends on the call type

OSGBPB - Wait until R2DATA not full, write GBPBNO (=&16) to R2DATA

Wait until R2DATA not full,

[write 13 byte OSGBPB control block to R2DATA]

(last byte of block is written first)

Wait until R2DATA not full, write type of transfer to R2DATA

Waiting for data in R2DATA

[read back 13 byte control block from R2DATA]

(last byte of block is read first)

Wait for data in R2DATA, read R2DATA bit 7 is 6502_C bit

Waiting for data in R2DATA, read 6502_A from R2DATA

5.2 Interrupt driven operations

In addition to these parasite initiated activities the parasite is also required to respond to interrupts from

registers 1, 3 and 4.

To determine the source of an interrupt it is important to follow the following order:

1. check for register 4 interrupt

2. check for register 1 interrupt

Register 1 interrupts:

Register 1 interrupts occur only in the host to parasite direction. The interrupt service sequence is:

Read type byte from R1DATA IF type <0 THEN

[; escape flag update

Replace the escape flag with bit 6 of type

RETURN from servicing interrupt

] ELSE

[; Event signal

Interrupt_R1_read 6502_Y event parameter

Interrupt_R1_read 6502_X event parameter

Interrupt_R1_read 6502_A event parameter

; BBC machine will now continue processing
Support Group Application Note No. 004, Issue 1.10 25

Support Group Application Note No. 004, Issue 1.10 12th October 1992

; any other actions to service event can be taken

]

Where Interrupt_R1_read is:

UNTIL data_ready_in_R1

DO [

IF data_ready_in_R4 THEN CALL R4_interrupt_service

]

RETURN read R1DATA

Register 4 Interrupts:

Read type byte from R4DATA IF type<0

THEN [; BBC machine is reporting an error

Wait for data in R2DATA, read and discard it

Wait for data in R2DATA, read error number form R2DATA

Read a zero byte terminated string from R2DATA

ELSE

]

[; Type is a command to initialise for register 3 block transfer

Wait for data in register 4, read Claimer_identity* from R4DATA

* For details of the identity numbers see Appendix A

CASE type OF

[

0 : ; Single byte transfer parasite to host.

Read 4 byte base address for transfer from R4DATA msb first

Set NMI routine for this transfer type

Wait for and remove synchronising byte from R4DATA

1 : ; Single byte transfer host to parasite

Read 4 byte base address for transfer from R4DATA msb first

Set NMI routine for this transfer type

Wait for and remove synchronising byte from R4DATA

2 : ; Double byte transfer parasite to host

Read 4 byte base address for transfer from R4DATA msb first

Set NMI routine for this transfer type

Wait for and remove synchronising byte from R4DATA

3 : ; Double byte transfer host to parasite

Read 4 byte base address for transfer from R4DATA msb first

Set NMI routine for this transfer type

 Wait for and remove synchronising byte from R4DATA

4 : ; No transfer (pass address host to parasite only)

Read 4 byte address from R4DATA msb first

Wait for data in R4DATA, discard it

Support Group Application Note No. 004, Issue 1.10 26

STA TPORT ; 2 uS

NOP ; 1 uS

NOP ; 1 uS

NOP ; 1 uS

INY ; 1 uS

Support Group Application Note No. 004, Issue 1.10 12th October 1992

5 : ; No transfer (transfer release)

6 : ; 256 type transfer parasite to host without interrupt

Read 4 byte base address for transfer from R4DATA msb first

Wait for data in Register 4, discard it

Transfer 256 bytes to host, via R3DATA

Write a byte into R4DATA; To stop unwanted ints on host

7 : ; 256 byte transfer host to parasite without interrupt

Read 4 byte base address for transfer from R4DATA msb first

Wait for data in Register 4, discard it

Transfer 256 bytes from host via R3DATA

]

RETURN ; From the interrupt

Notes:

For types 0-3: As soon as the synchronising byte is removed register 3 transfer requests (NMIs) will start to

occur. When the interrupt occurs 1 or 2 bytes are transferred (depending on the current mode).

A release (type 5) is a guarantee that no more register 3 NMIs will occur for the current transfer.

Register 3 Transfer Timings

During such an operation as loading a file into the parasite system from disc, data has to be rapidly passed

through the tube at instants dictated by a physical process - in this case, reading from a disc. For this reason

such transfers are made via register 3, which may be programmed to cause parasite NMIs. Because these

NMIs occur very rapidly, there are constraints on the timings with which the parasite must respond to such

NMIs.

After the parasite processor has read the synchronisation byte from register 4, the host processor will wait

for at least the length of the initial delay below (zero for host to parasite direction) before transferring the

first byte of data. Thus for transfers in the parasite to host direction, this initial delay is the time within

which the parasite must place the first byte (or pair of bytes) of data in register 3 after removing

the synchronising byte. For NMI transfers in the host to parasite direction, this delay is zero - the

parasite processor must be ready to cope with register 3 NMIs as soon as it has removed the

synchronisation byte from register 4. For type 7 transfer, not using NMIs the host will write the first byte

without delay, but the parasite cannot receive a byte immediately from R3DATA as it has to test the data

available bit in R3STAT. The parasite has to read this first byte in R3DATA before it is overwritten by the

next host write. Assuming the host code is as below, this allows 15.5 uS to read the first byte:

JSR &406 ; Initialise tube -routine returning when parasite reads

; synchronising byte

LDY 0 ; 1 uS

.loop LDA (host), Y ; 2.5 uS

Support Group Application Note No. 004, Issue 1.10 27

Support Group Application Note No. 004, Issue 1.10 12th October 1992

BNE loop ; 1.5 uS

(1 + 2.5 + 2 + 1 + 1 + 1 + 1 + 1.5 + 2.5 + 2 = 15.5)

The service time is the maximum time that the parasite has to process each subsequent transfer. The host

code is a simple loop reading or writing data, and so the parasite must be capable of inputting or outputting

data fast enough for this loop. For transfers of type 1 to 3, the host writing to or reading from register 3 a

byte (or pair of bytes) causes an NMI in the parasite. Thus the service time is an upper bound on the allowed

time for the NMI service routine. Similarly, for type 6 and 7 transfers, the service time is the maximum

time for the parasite to transfer each byte to or from R3DATA.

Transfer type Transfer direction Initial delay Service time
0 P to H 24 uS 24 uS

1 H to P 0 uS 24 uS

2 P to H 26 uS 26 uS/pair
3 H to P 0 uS 25 uS/pair

6 P to H 19 uS 10 uS

7 H to P 0 uS 10 uS

6 Startup Protocol

The Startup sequence for the second processor is:

Use the OSWRCH mechanism to write out a startup message

Send a zero byte to host via R1DATA to terminate it

Wait for data in R2DATA

; during this wait a load may occur from the host

; using R4/R3 block transfer protocols

IF data=&80 THEN execute from the address given in the R4 type 4 transfer

APPENDIX A: Tube Claimer Identities

When a filing system or other code claims the R3/R4 resource in the host its identity is passed to the second

processor as part of the R4 startup protocol. The identity codes are not related to filing system numbers.

Filing System Claim Identity Used

Tape 0

DFS 1

NFS primitives 2

NFS 3

ADFS 4

TELESOFT 5

HOSTFS 6

VFS 7

SRAM Utils 8

Z80 and CP/M 9

IEEEFS, Acacia RAMFS 15

HADFS 22

Support Group Application Note No. 004, Issue 1.10 28

Support Group Application Note No. 004, Issue 1.10

Support Group Application Note No. 004, Issue 1.10

12th October 1992

29

