

© Copyright Acorn Computers Limited 1985

Neither the whole or any part of the information contained in, or the
product described in, this manual may be reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information of a
technical nature and particulars of the product and its use (including the
information in this manual) are given by Acorn Computers in good faith.

In case of difficulty please contact your supplier. Deficiencies in software
and documentation should be notified in writing, using the Acorn Scientific
Fault Report Form to the following address:

Sales Department
Scientific Division
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge

C131 4JN

All maintenance and service on the product must be carried out by Acorn
Computers' authorised agents. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of the product, and therefore Acorn Computers shall not be liable
for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect
use of the product.

Published by Acorn Computers Limited,
Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN.

Within this publication the term BBC is used as an abbreviation for the
British Broadcasting Corporation.

NOTE: A User Registration Card is supplied with the hardware. It is in
your interest to complete and return the card. Please notify Acorn Scientific
at the above address if this card is missing.

ISBN 0 907876 43 9

	

Acorn Scientific

ii

	

OPS Issue 1

Contents

1 Introduction

	

1

1.1 Context

	

1

1.2

	

Panos Design Objectives

	

1
1.3

	

Conventions in this Manual

	

2
1.4

	

Organisation of this Manual

	

2
2 Concepts

	

5
2.1 Introduction

	

5
2.2

	

User Interface Model

	

5
2.3

	

Program Control Model

	

7
2.4

	

I/O System Model

	

8
2.4.1 Streams

	

8
2.5

	

Filing System Model

	

10
2.5.1

	

File Names

	

11
2.5.2

	

File Name Extensions

	

12
2.5.3

	

Time and DateStamping

	

14
2.5.4

	

Access Rights (Permissions)

	

14
2.5.5

	

Filing System Structure

	

14
2.5.6 Examples

	

17
2.6

	

Event Handling Model

	

17
2.7

	

Global Environment Variables

	

18
2.7.1

	

System Defined Variables

	

18
2.7.2

	

Aliasing Commands

	

19
2.8

	

Start-Up and Configuration Data

	

20
3

	

System Organisation

	

21
3.1 Introduction

	

21
3.2 Installation

	

21
3.3 Start-Up

	

21
3.3.1

	

Loading Panos

	

22
3.3.2 Pandora

	

22
3.3.3

	

Configuration Data (!Config)

	

23
3.3.4

	

Start-Up Command File (!Panos)

	

25
3.4

	

Standard Conventions

	

25
3.5 Components

	

26
4

	

Command Language

	

27
4.1 Introduction

	

27
4.2

	

Command Line Interpreter

	

28

OPS Issue 1

	

iii

4.2.1

	

Format of Commands

	

28
4.2.2

	

Search Path

	

28
4.2.3

	

Command Prompt

	

30
4.2.4

	

Action of the Command Interpreter

	

30
4.3 Arguments

	

30
4.3.1

	

Position and Keywords

	

31
4.3.2

	

Format of the Argument String

	

32
4.3.3

	

Examples of Command Lines

	

34
4.4

	

Line Editing

	

34
4.5

	

Wild Symbols

	

35
4.6

	

Data Formats

	

37
4.6.1

	

Simple Items

	

37
4.6.2

	

Time and Date Format

	

37
4.6.3

	

VDU Characteristics

	

38
4.7

	

Built-in Commands

	

39
4.8

	

Command Files

	

41
4.8.1

	

Basic Facilities

	

41
4.8.2

	

Parameters with Command Files

	

43
4.8.3

	

Parameter Substitution

	

45
4.8.4

	

Argument Decoding and the Keystring

	

45
4.9

	

Standard Conventions

	

50
4.9.1

	

Standard Arguments

	

51
4.9.2

	

Usage of Standard Arguments

	

53
4.9.3

	

Global Control

	

54
5

	

Feedback and Errors

	

57
5.1 Introduction

	

57
5.2

	

Error Messages

	

57
5.3 Feedback

	

58
5.4

	

Error Control

	

59
5.5

	

Help Information

	

60
6 Utilities

	

61
6.1 Introduction

	

61
6.2

	

Access Command

	

63
6.3

	

Catalogue Command

	

65
6.4

	

Configure Command

	

70
6.5

	

Copy Command

	

72
6.6

	

Create Command

	

75
6.7

	

Delete Command

	

77
6.8

	

Echo Command

	

79
6.9

	

Logon Command

	

81

6.10

	

Rename Command

	

83
6.11

	

Set Command

	

85
6.12

	

Show Command

	

88
6.13

	

Star Command

	

90
7 Editor

	

93
7.1 Introduction

	

93
7.1.1 Context

	

93
7.1.2

	

Basic Facilities

	

94
7.2 Concepts

	

96
7.3

	

Editor Organisation

	

97
7.3.1 Installation

	

97
7.3.2

	

Loading the Editor

	

97
7.3.3

	

Global Variables

	

100
7.4 Display

	

102
7.4.1

	

Screen Layout

	

102
7.4.2

	

The Cursor

	

102
7.4.3

	

Position Indicator

	

103
7.4.4

	

Line Overspill

	

103
7.4.5

	

The Clock

	

104
7.4.6

	

Display of Special Characters

	

104
7.5

	

Command Language and Basic Functions

	

104
7.5.1

	

Printing Keys

	

105
7.5.2

	

Cursor Movement Keys

	

105
7.5.3

	

Deletion Keys

	

106
7.5.4

	

Control Keys

	

107
7.5.5

	

Function Keys

	

107
7.5.6

	

Other Keys

	

107
7.5.7

	

Prompt Windows (Dialogue)

	

108
7.5.8.

	

Command Windows (Panos CLI)

	

108
7.6

	

Feedback and Errors

	

109
7.6.1

	

Help Information (and Windows)

	

110
7.6.2

	

Error Messages (and Windows)

	

111
7.7

	

Advanced Editor Functions

	

112
7.7.1

	

Block Editing

	

112
7.7.2

	

Searching and Replacing

	

114
7.7.3

	

Learnt Sequences

	

119
7.7.4

	

Moving the Cursor

	

120
7.7.5

	

Windows and Buffers

	

121
7.8 Problems

	

123
8 Linker

	

127

OPS Issue I v

8.1 Introduction

	

127
8.1.1 Context

	

127
8.1.2

	

Basic Functions

	

127
8.2 Concepts

	

129
8.2.1

	

Linking Model

	

129
8.2.2

	

Linking under Panos

	

130
8.3

	

Linker Organisation

	

130
8.3.1 Installation

	

130
8.3.2

	

Global Variables

	

131
8.4

	

Command Language

	

131
8.4.1

	

General Form

	

131
8.4.2 Examples

	

132
8.5

	

Advanced Functions

	

132
8.5.1

	

Object Files

	

132
8.5.2

	

Library Files

	

133
8.5.3

	

Forced Files

	

136
8.5.4

	

Control File

	

136
8.5.5

	

Image File

	

137
8.5.6

	

Producing a Link Map

	

138
8.5.7

	

Absolute Images

	

138
8.5.8

	

Base Address Specification

	

139
8.6

	

Feedback and Errors

	

139
8.6.1

	

Redirecting Error Messages

	

139
9 Problems

	

141
Appendix A

	

145
Table of Character Codes

	

145
Appendix B

	

147
Bibliography

	

147

Vi OPS Issue I

1 Introduction

1.1 Context

This document describes the Panos user interface. As its name suggests, it is
a guide to operating Panos from the keyboard - how to edit files, how to list
directories etc. It does not deal with installation; this is described in the
User Guide supplied with the system.

More specialised material, which will be of use to software developers, can
be found in the companion Panos Programmer's Reference Manual which is
primarily concerned with the Panos procedure library.

More specifically, the items dealt with in this Guide are as follows:

-

	

the concepts (or user model) that govern the behaviour of Panos
-

	

the organisation and configuration of a Panos system
-

	

the command language for requesting Panos to carry out an action
-

	

the operation of the Panos utilities including the editor and linker.

Panos provides the base for all systems software supplied with Cambridge
Series hardware with the exception of BBC Basic.

1.2 Panos Design Objectives

Panos was designed with the following objectives:

-

	

to provide minicomputer user facilities
-

	

to provide microcomputer control over the environment
-

	

to be a specialist single user system
-

	

to be installable and maintainable by the end-user
-

	

to provide support for professionals: both for end-users and
programmers

-

	

to be relatively simple, yet extensible
-

	

to be capable of operating on modest configurations
-

	

to take advantage of fast, 32 bit computer power

OPS Issue 1

	

1

Chapter I

-

	

to integrate with the BBC Microcomputer hardware and software
-

	

to exploit networking and other communications
-

	

to support high level language programming in many languages
-

	

to permit ease of learning and use

1.3 Conventions in this Manual

The following conventions are observed in this publication:

1. Numbers not in decimal are prefixed by their base, for example
16_1A is decimal 26; -2_1010 is -10 in decimal.

2. Angled brackets refer to a class of objects, for example
< device name > means any one device.

3. Square brackets or braces enclose optional items.

4. The term `BBC Microcomputer' should be extended to include the
term '10 Processor' as used in the Cambridge Workstation, and
vice-versa.

1.4 Organisation of this Manual

This manual has been carefully structured to permit its use both as a
reference guide, and as a primer. This has been achieved by dividing it into
many relatively self-contained sections and sub-sections, ordering these
sections for the sequential reader, but providing numerous cross-references
for the browser. Some sections contain more specialist material; these may
be omitted on first reading.

The manual and its constituent parts have been separated into:

-

	

concepts that define the `user model'
-

	

organisational and configuration details
-

	

principles of the command language
-

	

feedback to the user (including errors)
-

	

operational (`how to') details.

OPS Issue I

Introduction

This structure applies both to the manual as a whole, and to individual
chapters where applicable. Thus Chapters 1 to 5 introduce, then describe
general concepts, organisation, command language, and feedback for Panos
as a whole. Chapters 7,8 and 6 detail operational use of the editor, linker,
and remaining utilities respectively. These three chapters are structured to
some extent in the same way as the whole, i.e. describe particular concepts,
command languages etc.

Before embarking on the operational details it will be helpful to read at least
some of the preliminary material.

OPS Issue 1

	

3

2 Concepts

2.1 Introduction

Context

This chapter presents many of the concepts that determine the `user model'
of Panos. They are described in a manner suitable for the end-user rather
than for the programmer.

Many of these concepts have an equivalent form for the programmer, and as
such are described in the Panos Programmer's Reference Manual as follows:

Storage Management

	

Module Store

	

Chapter 5
Input and Output

	

Module IO

	

Chapter 6
Filing Systems

	

Module File

	

Chapter 7
Program Loading

	

Module Loader

	

Chapter 8
Condition Handling

	

Module Handler

	

Chapter 11
Asynchronous Events

	

Module Handler

	

Chapter 12
Global Strings

	

Module GlobalString	 Chapter 13
Program Control

	

Module Proarnm

	

Chnnfpr 14

Organisation of this Chapter

This chapter simply describes in turn the conceptual models for the user
interface, program control, input and output, filing system, event handling,
global variables, and configuration data.

2.2 User Interface Model

The model for interaction with the user is described in this section.

Chapter 2

Input/Output, and hence dialogue with the user is based on the notion of
streams. There are four such logical streams associated with Panos:

input stream
output stream
control stream
error stream

The input stream is used for the data being operated on by a program, for
example numeric values by a user program, or text prepared for a text
formatter.

The output stream is used for the results of a program, for example a table
of values from a user program, or formatted text from a text formatter.

The control stream is for input from the user to control the action of a
program, for example the response to a prompt, or the name of a program
or command to run. Associated with the device for such input is the device
used for the output of prompts. By default the control stream uses the
screen (vdu) for output, and the keyboard for input.

The error stream is for feedback to the user, i.e. error messages, warnings,
or for confirmatory messages to provide reassurance. By default the error
stream uses the screen.

Logical streams may be associated with physical streams and hence with
actual devices in a number of ways. If the user takes no specific action, the
default mappings as indicated above are used. Alternatively, the user may
explicitly redirect input or output to a particular device. For example, error
messages could be redirected to a printer.

There is no requirement on programs to use logical streams, so many will
use direct I/O from or to physical streams instead. However, where
appropriate, all the supplied systems software follows the model of
interaction as described. Error and Control streams are used by most system
programs, input and output streams are however mainly applicable to filter
type programs.

Interaction with the user is also governed to some extent by the values of
certain system attributes:

6

	

OPS Issue I

Concepts

- global (environment) variables
- vdu characteristics
- tab settings
- function key bindings
- date and time
- working directories

These attributes have certain default values or may be set by users for the
duration of Panos use. They are described in full later.

2.3 Program Control Model

Panos provides support for the execution of programs, both user and
system. More specifically it provides a runtime environment for programs,
in particular for programs written in high-level languages, and including
those written in mixed languages.

Panos supports a procedural model of program execution. This means that
programs may call other programs and resume execution on return. This
property is capitalised on by the command line interpreter and by the
editor.

In addition to the execution of single programs, Panos is also able to obey
command sequences, and thus to execute a sequence of programs. This is
achieved through the use of command files.

Communication between two programs running sequentially or
procedurally may be achieved through the use of global variables.

When a program is invoked from its parent (which typically would be the
command line interpreter), its initial environment consists of:

-

	

the logical streams of its parent (see 2.4),
-

	

its own memory,
-

	

the same environment for events as its parent (see 2.6)
-

	

the same global variables as its parent (see 2.7), since these are a shared
resource.

For full details see the Panos Programmer's Reference Manual

Chapter 2

2.4 1/O System Model

Panos presents its own device and filing system models to the user. These
models are currently implemented by lower level BBC Microcomputer
mechanisms. For example, Panos files are simply stored and maintained by
a filing system such as the DFS (for floppy disc), ADFS (for Winchester or
MFM floppy), or NFS (for file server).

The user need not be aware of the lower level implementation except
perhaps when transferring BBC Microcomputer files to or from Panos, and
to some extent when the underlying filing system imposes certain
restrictions.

Panos is able to provide more useful higher level properties than the raw
filing system, for example, time-stamping of files, file name extensions, and
filing system names forming part of a file specification.

Within Panos, devices and filing systems are treated uniformly wherever
possible. For instance, when using the utilities, specifying a device or filing
system for output follows the same format.

In this section the Panos I/O model is described. This applies to all devices.
The Panos filing system model for devices that maintain directories extends
the I/O model, and is described in the next section.

For further details, refer to Chapter 6 of the Panos Programmer's Reference
Manual.

2.4.1 Streams

Input/output is based upon the concept of streams. An I/O object may be a
device or a file, and must be identified by a string (i.e. textual name) with
one of the following syntactic forms:

(a)

	

< device name >
(b)

	

< filing system name > : < file name >
(c)

	

< file name >

The case (upper or lower) of < device name > and < filing system name > is
not significant. The actual names of currently supported filing systems and
devices are listed in Tables 2-1 and 2-2.

Examples (most showing a file called data-dat) are:

(a)

	

vdu:

	

screen (visual display unit)
(b)

	

adfs:$.data-dat

	

file in root directory on adfs
(c)

	

data-dat

	

file in current working directory
(d)

	

dfs:data-dat

	

file on current DFS drive
(e)

	

dfs::2.data-dat

	

file on DFS drive 2

Note the position of the colon after the filing system or device name.
Because the DFS filing system also uses a colon to specify the drive number,
in some cases, two colons will need to be used; one for the device, and one
for the drive number, as in example (e).

The streams described in this section are physical and refer to actual
devices; the logical streams of the Panos model of interaction may be
mapped onto physical streams, (see 2.2 and 4.9.1). The logical streams are
listed in Table 2-3.

Table 2-I Filing System Names

DFS

	

- disc filing system (floppy disc)
ADFS

	

- advanced disc filing system (Winchester, MFM floppies)
NFS

	

- network filing system (for Econet file server)

Table 2-2 Physical Devices

vdu:
Refers to the screen (output only) with filtering of control characters.
Only ASCII characters (32..126), clear-screen (FF), newline
(NL = LF) and carriage-return (CR) are sent to the screen. All others
are output as a pair of hexadecimal digits enclosed in square brackets.

rawvdu:
Refers to the screen (for output only) with no filtering. The effect is
exactly as defined for VDU codes.

kb:
Refers to the machine's keyboard (input only) with both
carriage-return (CR) and line-feed (LF) being read as newline (NL).
Input is buffered and line editing (see 4.4) is enabled. Only the printing

Concepts

OPS Issue 1

	

9

Chapter 2

characters and line-editing characters are accepted, plus ESCAPE and
CTRL - D . All others are ignored.

rawkb:
Refers to the keyboard (input only) with no translation or filtering of
characters. Raw characters are read directly from the keyboard and
are not echoed.

bbc:
A combination of rawvdu: for output and rawkb: for input.

tt:
A combination of vdu: for output and kb: for input.

RS423:
Refers to the serial line (input or output).

printer:
(or lp:) Refers to the printer (output only).

null:
Refers to a `sink'. Output to this device is discarded. Input from this
device appears as if end of file were reached immediately.

Table 2-3 Logical Streams (Special Devices)

Input:

	

Current Input Stream

Output.

	

Current Output Stream

Control:

	

Current Control Stream

Error:

	

Current Error Stream

2.5 Filing System Model

The Panos filing system model presents a logical filing system to the user.
This model is currently implemented partly by Panos directly, and partly be
mappings onto more primitive BBC Microcomputer, i.e. physical filing
systems. In principle, the user need only know about the Panos model, but
see below.

Wherever possible Panos presents a uniform view regardless of the physical
filing system, but where there are differences, limitations of the physical
system may impose restrictions. There are three possibilities.

Firstly (and usually) the user request is carried out exactly as requested.
Secondly, Panos will sometimes be able to make an obvious interpretation,
for example, date-stamps have different granularity in different systems, so
fractions of a second may need to be rounded. Finally, sometimes there will
be restrictions, for example a legal length Panos name will always map onto
an ADFS or NFS name, but not onto a DFS name. The user request will
be rejected in such a situation.

The Panos filing system model has the following components which are
described in detail in the remainder of this section:

- file names
- file name extensions
-time and date stamping
- access rights (permissions)
- hierachical directory structure

Together with size, these determine the file attributes.

2.5.1 File Names

Panos basic file names (with no directory or drive prefix) consist of a base
filename plus an extension separated by a hyphen Names may be of any
length, although in practice the physical filing system will impose
constraints.

Legal characters in names are:

alphanumeric characters

	

A-Z, a-z, 0-9,
special characters

	

! _/

The characters $, &, _, , . : and - have special meanings (see below). File
names are case (lower/upper) insensitive, that is case is ignored in referring
to file names, although files are stored with names in mixed case.

Concepts

OPS Issue 1

	

1 1

Chapter 2

2.5.2 File Name Extensions

The Panos filing system supports the concept of typed files through the
mechanism of file name extensions. Those defined by Acorn are shown in
Table 2-4. File typing is not enforced, but many of the system programs
such as the language compilers rely on these conventions.

File name extensions are from 0-4 characters in length, plus the prefix
character "='. Since they form part of the file name, they consist of the same
legal characters.

Extensions are mapped onto the physical filing system. At present these use
rules defined by the user, but set up in the !Panos initialisation file through
the mechanism of global variables.

The mapping is from the Panos file extension onto a filing system directory.
On the ADFS and NFS, the directory takes the same letters as its name
prefixed by an underscore. On the DFS, the directory has a single-letter
name as shown in Table 2-4.

So, for example, the file name `Prog1-Pas' will map onto a directory called
`_pas' on the ADFS or NFS, and its physical name is `_pas.Prog1'. On DFS,
the extension `-Pas' is mapped onto a single-letter directory, `p', and its
physical name is thus `p.Prog1'. This is achieved (in !Panos) as follows:

-> set var file$dfs:-pas "p.-"

Although it is normally necessary for the user to create directories explicitly
on the ADFS and NFS for the purpose of file store organisation, it is not
required in this context. Such directories are `hidden' within Panos,
although they will become explicit when, say, cataloguing a Winchester disc
under Pandora or on a BBC Microcomputer. In fact, the user normally
need only be aware of these mappings when reading or writing BBC
Microcomputer files.

Standard Conventions

By convention, certain file name extensions and associated meanings are
employed within Panos. These are shown in Table 2-4 along with the DFS
mapping. Table 2-5 shows those DFS directories reserved for use by Acorn.
and those available for users or for packages.

1 2

	

OPS Issue 1

Concepts

OPS Issue 1

	

13

Chapter 2

Available for Use
b. g. k.
u. v. w.
0. 1. 2.
3. 4. 5.

2.5.3 Time and DateStamping

Panos files may have associated with them the time and date that they were
first created. In practice many of the utilities such as the editor `create' the
file afresh every time it is updated. If the time has not been set by the user
when switching the machine on or typing

	

CTRL - BRE K then the date
stamp will be `unset'. Non-Panos files such as Basic programs appear to
Panos as if they too have unset date stamps.

The date stamp is currently stored as part of the directory entry in the fields
normally used by the load and execution addresses (which Patios does not
need as such). Care is therefore required when using Panos to copy
non-Panos files. Use the -exact option with the Copy command.

2.5.4 Access Rights (Permissions)

The Panos model of permissions (rights to access a particular file) follows
that of the ADFS or NFS. For details, see for example the Winchester Disc

Filing System User Guide. See also the Access command.

2.5.5 Filing System Structure

The Panos model of filing system structure follows that of the ADFS or
NFS, i.e. it is hierarchical. For full details, see for example the Winchester

Disc Filing System User Guide.

The ADFS and NFS have a hierarchy that can extend to any depth, i.e. at
any level the contents of a directory may be `leaf' files or further directories.
The top level directory is called the `root'. On the NFS each user is
allocated a directory further down the structure called the 'log-on'
directory.

1 4

	

OPS Issue 1

Concepts

OPS Issue 1

	

1 5

Although the DFS has a flat directory structure, Panos treats it in the same
way subject to the constraint that there is only one level of sub-directory
possible below the root directory, so the longest path on a given drive is
$.<dir>.<name >.

Associated concepts are directories, pathnames, object specifications, and
working directories; these are now described in turn.

Directories

Panos currently inherits the properties of the physical filing systems, thus,
for example, there is a limit of 47 separate files per directory within ADFS.
There are no separate directories within Panos on the DFS since the single
level structure provided is used by Panos for the file name extension.

Object Specifications and Pathnames

To refer to a file, i.e. to give an `object specification', it is always possible to
supply a full `Pathname'. For example:

adfs::0. $.Reports.May. Visit-txt
dfs:: l . $. Visit-txt

The first might be a text file describing a visit residing in directory May
which itself resides in directory Reports which is in the root directory of the
ADFS filing system on a Winchester. The second might be the same file
but on drive 1 of a floppy disc.

The full pathname starts with a device and/or drive name, and is followed
by a file name starting with $ or &.

In practice file references tend to be localised, so there are a number of
mechanisms for shortening the full pathname. These include the use of
`(current) working directories', of special symbols, and of wild symbols.

Working Directories

Associated with each filing system on a particular machine is a `working
directory'. One of these is the `current working directory'. Initially the
working directory is the root directory for each device on drive number 0,
although !Panos as supplied will alter this. The current working directory

Chapter 2

may be changed by means of the Set command, and inspected with the
Show command. This also will change the working directory for the filing
system referenced, and this will remain in force until a subsequent change
for that filing system.

A relative object specification is one for which the file name does not start
with $ or &. Such a specification is taken to refer to the working directory.
If a device name is supplied, then it refers to the working directory for that
device, otherwise to the current working directory.

A full path name has $ or & starting the file name. Such a specification is
taken to refer to the root or log-on directory respectively. If a device name
is supplied, then it refers to that device, otherwise to the device associated
with the current working directory.

For example, if there were a command called `select', the following series of
commands would refer to files whose full path names are shown on the
right hand side:

-> select $.index-txt

	

adfs::0.$.index-txt

-> select $.heroes.ludwig-txt	adfs::0.$.heroesLudwig-txt

-> set dir $.heroes

-> select ludwig-txt

	

adfs::0.$.heroes.ludwig-txt

-> set dir dfs::1

-> select johann-txt

	

dfs::1.$.johann-txt

-> select adfs:ludwig-txt

	

adfs::0.$.heroes.ludwig-txt

There is a further, and separate mechanism for referring to the name of a
program or command file to be executed. See under `Search Path' in
section 4.2.2.

The special symbols that may form part of an object specification are shown
in Table 2-6:

Table 2-6 Special Svmbols

$

	

root directory
& log on directory
® (current) working directory

parent directory
-

	

file name extension separator
directory separator

1 6

	

OPS Issue 1

Concepts

2.5.6 Examples

Examples (for the file data-dat) are:

(a) data-dat

	

in current working directory
(b) adfs::0.$.data-dat

	

full path name
(c) adfs:data-dat

	

in adfs working directory
(d) MyDir.data-dat

	

in directory MyDir within current
working directory

(e) $.MyDir.data-dat

	

in directory $.MyDir
(f) data-dat

	

in parent directory
(g) dfs::2.data-dat

	

on floppy disc drive 2
(h) dfs:d.data

	

physical file name

2.6 Event Handling Model

Panos provides facilities for dealing with both synchronous and
asynchronous events. In this context, the former are sometimes called
conditions or exceptions.

Exceptions are synchronous to the flow of program execution, and may be
` hard' e.g. division by zero, or `soft', i.e. signalled by the programmer
through his or her code.

Asynchronous events are generated by interrupts in the I/O Processor, and
include the ESCAPE key being pressed.

Events may be used within a program to help organise control flow. Often
they are used to terminate a program when an `error' occurs. See Chapter 5
for more details. It is possible for the high-level language programmer to
trap events and take suitable recovery action. See the Panos Programmer's

Reference Manual, Chapters 11 and 12 for details.

OPS Issue 1

	

1 7

2.7 Global Environment Variables

The way in which Panos behaves is determined to an extent by the settings
of the global variables sometimes referred to as global strings. See 2.3 for
the context of their use, and Chapter 13 of the Panos Programmer's

Reference Manual for a full description.

A global variable has a name and a string value. To alter the value of a
variable use the Set command, (or the Set built-in command). To inspect
the value of one or more variables use the Show command. The SYS$
variables are an exception: they cannot be changed in this way.

To set the value of a variable each time Panos is run, edit the !Panos
command file.

For example, to change the Panos prompt, then inspect the values of the
PROGRAM$ variables, type:

-> set var CLI$prompt

& show var PROGRAM$*

Enclosing the value of the global variable in double quotes is not normally
necessary, but will allow leading and trailing spaces to be included as in the
example.

A variable is declared through being set, i.e. before it is given a value it does
not exist. Some variables, e.g. CLI$Prompt are initially set by the system.

2.7.1 System Defined Variables

There are a number of global variables defined by the system, most of which
are initialised by Panos itself, or whenever Panos is entered through
execution of the !Panos command file. These variables generally hold
information relating to the state of the environment, hence their name.

The global variables defined by the system are shown for completeness in
Table 2-7. The meaning and significance of each variable or group of
variables are explained in the sections referred to in the Table.

Chapter 2

18

	

OPS Issue 1

Table 2-7 System Defined Global Variables

CLI$ResultCode

	

result code of last program to run

	

5.4
CLI$Path

	

search path for Panos commands

	

4.2.2
CLI$Prompt

	

Panos CLI prompt

	

4.2.3
CLI$Echo

	

determines echoing of
command files

	

4.8.l
CLI$Stop

	

defines termination condition
in command files

	

4.8.1
FILE$-ext

	

file transformation for `ext'

	

2.5.2
FILE$dfs:-ext

	

file transformation for `ext' on DFS

	

2.5.2

SYS$Time

	

system time (textual form)

	

4.6.2
SYS$Date

	

system date (textual form)

	

4.6.2
SYS$Version

	

Panos version number

PROGRAM$Verbosity controls feedback

	

4.9.l
PROGRAM$Help

	

controls help option

	

4.9.l
PROGRAM$Identify

	

controls identify option

	

4.9.1
PROGRAM$Force

	

controls permission override

	

4.9.l
PROGRAM$Confirm

	

controls confirmation requirement

	

4.9.l
PROGRAM$Abandon

	

controls action following an error

	

5.4

Alias$cmd

	

alias of cmd

	

2.7.2

Edit$...

	

for use by Editor

	

7.3.3
Link$...

	

for use by Linker

	

8.3.2

The PROGRAM$ variables control the global settings of certain options
used with most Panos utilities.

2.7.2 Aliasing Commands

Alias$xxx is a special form for global variables that enables aliases or
abbreviations to be set up for individual command lines to suit personal (or
system) taste. Command files provide a more generalised, but more
expensive mechanism.

If a global variable alias$xxx has value "yyy", where yyy is any string, then
the command:

OPS Issue 1

	

1 9

Concepts

Chapter 2

-> xxx args

will be interpreted as if the user had typed:

-> yyy args

For example:

.set alias$ed "edit -buffer 350000"

. set alias$cp Pascal

.set alias$print "copy -to printer: -from "

Note that the command line is re-evaluated after the substitution of one
alias so that it is possible to alias an alias. It is also possible to construct an
alias which allows parameter substitution; in this case, an alias string is
made of two parts separated by the character `-'. The substring before the
` -' is a keystring, the result of which will be used for substitution of the
substring after the `-'. For example:

-> set alias$saydone

	

".key S/l-echo<S> done!"

-> saydone file1

will cause the command echo f i le1 done! to be executed. See sections 4.8
for details of parameter substitution and the keystring.

2.8 Start-Up and Configuration Data

In addition to the values of global (environment) variables (see 2.7), the
behaviour of the system is also governed by configuration data. These data
relate to lower level implementation features such as keyboard auto-repeat
rates, printer assignment, etc.), but unlike global variables they may not be
set once Patios is running.

On initialisation, Patios reads two files: the configuration data file, `!Config'
and the command file `!Panos'. Details of this process, and the default or
initial values are given in Chapter 3.

20

	

OPS Issue 1

3 System Organisation

3.1 Introduction

Context

This chapter describes the organisation of a Panos system: its constituent
parts, how to configure it for a particular purpose, and how to start it up.

Details of installation and other introductory material may be found in the
User Guide supplied with the system. Particular details referring to the
organisation of certain utilities are given later in the relevant Chapters.

Organisation of this Chapter

First, details of configuring, loading and executing Panos are given. This is
followed by a summary of system wide standard conventions. Finally the
individual components of a Panos system are listed for reference.

3.2 Installation

The installation of Panos and its utilities is described in the User Guide
supplied with the system.

3.3 Start-Up

Panos is loaded and run (`booted') from a filing system on which it has
previously been installed.

On initialisation, Panos reads two files: the system configuration file,
`! Config' which sets up a new configuration (this concerns data that relate to
lower level implementation features such as keyboard auto-repeat rates,
printer assignment, etc.); then it obeys the command file `!Panos'. Both of
these files can be altered (although in different ways) from within Panos by
the user to suit a particular system.

OPS Issue 1

	

21

3.3.1 Loading Panos

Patios is loaded as follows:

l)

	

If necessary, select a filing system where Patios may be
found. This is only required if the currently selected
filing system is different from that where Patios is stored.

2)

	

Logon to the network if Patios is to be booted from NFS.

3)

	

Run the Panos boot program.

4)

	

Set the date and time using the Set utility.

5)

	

Set up a local environment, e.g. for a particular
package, if so required.

For example, to boot Patios from Winchester, type

*Panos

To boot Panos from the network, type for example:

*NET

*I AM kvk roff

*PANOS

Further details, including instructions for the DFS are given in the User
Guide supplied with the system.

3.3.2 Pandora

Patios is booted from the Pandora command prompt. Patios itself, as
currently implemented, relies upon Pandora which is a firmware kernel. It
performs several tasks, including communicating with the I/O processor,
(which will be some form of BBC Microcomputer). It issues a * prompt,
and passes input from the user to the I/O Processor command line
interpreter. Users have access to the usual * commands such as filing
system commands, *FX, *TV commands and so on, as described in the BB(
Microcomputer User Guide and elsewhere.

22

	

OPS Issue 1

Chapter 3

System Organisation

At present, the following programs run directly under Pandora:

Bas32

	

BBC BASIC,
Asm32 Code produced by the Assembler (as an option),
Panos

	

Operating system.

Documentation of Pandora is of very specialised interest, typically to
operating system developers only, and is found in the Panos Technical
Reference Manual.

3.3.3 Configuration Data (!Config)

These are introduced in section 2.8. A full list is shown in Table 3-l.

The settings may be altered by executing the Configure utility, but their
effect does not occur until Panos is re-initialised.

There are certain default values, shown in the Table, plus a set of values
supplied as the initial values of the data file. These are not necessarily the
same. The Configure program may need to be run when installing Panos
onto a new system.

The file !Config is updated by the Configure utility at the directory root (`$')
level. Separate customised !Config files can be created for a particular
application on any hierarchical filing system, or for individual users on the
Econet. When Panos is entered, it searches firstly in the current working
directory, and then in the root ($) directory for !Config. Econet users can
therefore have their own separate version of !Config which is stored in the
` &' (logging-on) directory.

Full Details about many of the characteristics can be found in a BBC
Microcomputer User Guide or equivalent.

OPS Issue 1

	

2 3

Chapter 3

Table 3-1 Configuration Data

Item

	

Default (for ADFS)

Screen Mode

	

3
Screen Vertical Shift

	

0
Interlace

	

off
Keyboard auto-repeat rate

	

10
Keyboard auto-repeat delay

	

50
Caps Lock

	

off
Default RS423 format

	

8 data bits
1 stop bit
No Parity

RS423 Receive baud rate

	

9600
RS423 Transmit baud rate

	

9600
Printer assignment

	

parallel
Printer ignore character

	

0
Max no of modules

	

1024
Physical filename of Panos database

	

$.PanosLib.PanData
Floppy disc drive speed

	

Fast
Size of global variable table

	

1500

The `Physical filename of Panos database' should point to
`$.Panoslib.PanosData' for an ADFS or NFS implementation; and

, :O.Pandata' for the DFS. Note that three different versions of !Config are
supplied on the distribution discs: !Config (for the DFS), !ConfiA (for the
ADFS/NFS), and !ConfiS for slow floppy discs (DFS). The file !ConfiA is
automatically copied across from the distribution disc as $.!Config during
installation onto the ADFS or NFS. Users of slow floppy discs (i.e. with
slow access times) should replace !Config with !ConfiS before installation.
(use *RENAME).

The `Size of global variable table' refers to the number of bytes allocated to
the table which holds all of the Panos global variables. This would need
updating if too many global variables were set.

The `Max no of modules' refers to the number of slots in the physical
module table which are free for allocation for user program modules. See
the Panos Programmer's Reference Manual for more details.

24

	

OPS Issue I

System Organisation

3.3.4 Start-Up Command File (!Panos)

This is a regular command file, which is executed when Panos is initialised.
The version supplied with the system is used to set the values of global
(environment) variables, (q.v.).

Command files, and the individual commands shown in the examples are
described in 4.8. To alter !Panos, the file can be edited just like any other
text file, (see Chapter 7).

The global variables initialised in the supplied versions are summarised in
Table 3-2.

Table 3-2 Initialised Global Variables

CLI$Path

	

set up search path
EDIT$...

	

to configure the editor
LINK$...

	

to configure the linker
LL$...

	

to configure Pascal and C
PAS$...

	

to configure Pascal
C$...

	

to configure C
FILE$...

	

to set up file name extension mappings for ADFS and NFS
FILE$DFS... to set up file name extension mappings for DFS
ALIAS$...

	

to set up command abbreviations

For an example, list or edit the version supplied on the system.

3.4 Standard Conventions

Many of the ways Panos may be organised and installed are `soft', that is
may be implemented by the user. However, certain standard conventions
are adopted in the software as supplied and in the documentation. Some of
these conventions are described elsewhere in this manual, viz:

File Name Extensions

	

2.5.2
Standard Arguments

	

4.9

The conventions used for organisation of the discs into surfaces (for DFS)
or directories (ADFS or NFS) in described in Chapter 3 of the User Guide
supplied with the system.

CPS Issue 1

	

2 5

3.5 Components

A Panos system has the following individual components:

-

	

library of procedures organised into modules, memory resident
(PanData)

-

	

command line interpreter, memory resident (PanData)

-

	

system loader (Panos)

-

	

library of procedure names for resolving references (panos-lib)

-

	

set of utilities including an editor and linker

-

	

data files for initialisation (!Panos, !Config)

-

	

system defined global variables (in ! Panos)

-

	

set of install command files (Install-cmd, InstDFS-cmd)

-

	

set of language systems

-

	

set of conventions (see 3.4)

26

	

OPS Issue 1

Chapter 3

4 Command Language

4.1 Introduction

Context

When Panos is entered, a system program (the command line interpreter) is
given control. The Panos command line interpreter interacts with the user
and, as its name suggests, has the function of accepting commands and
executing programs, or interpreting command files. On system startup the
interpreter is set running, it outputs a prompt, and waits for a command to
be entered.

The Panos command line interpreter conceptually is an ordinary user-level
program interfacing with Panos via the supplied library procedures (as
documented in the Panos Programmer's Reference Manual and executing
programs according to the procedural model. It is the central component in
the user interface model.

Many of these user level aspects have an equivalent form for the
programmer, and as such are described in the Panos Programmer's
Reference Manual as follows:
Argument Decoding

	

Module DecodeArgs

	

Chapter 3
Data Formats and Conversions

	

Module Convert

	

Chapter 4
Time and Date formats

	

Module TimeAndDate

	

Chapter 10
Command Interpreter

	

Module Command

	

Chapter 15
Wild Symbols

	

Module Wild

	

Chapter 16

Organisation of this Chapter

The command intepreter has associated software for decoding arguments,
(see 4.3), wild symbol expansion, (see 4.5), Further, there are associated
conventions adopted where relevant by the utilities and compilers for
standard argument strings, (see 4.9). These combine to provide a uniform
model of interaction for the user.

OPS Issue 1

	

27

Chapter 4

28

	

OPS Issue I

4.2 Command Line Interpreter

4.2.1 Format of Commands

In interactive mode (as opposed to command file mode) user input to the
command interpreter is in the form of text lines which have the format:

-> <CommandName> <argument string>

where < CommandName > is one of:

(l) the name of a built-in'.' command
(2) the name of a file containing commands
(3) the name of a file containing a program

The program may be a user program, an application, or a system program
such as a utility or a compiler.

The < argument string > is described in section 4.3.

The line may be edited as it is typed, e.g. to correct mistakes, by the use of
special keys, see 4.4.

Commands and arguments are case insensitive as regards the user, (but not
for the programmer - see 4.8.4).

4.2.2 Search Path

Except in the case of built-in commands the interpreter must first find the
program or command file to execute. Since such files may in general be
user or system supplied, and may reside in several different places
depending on context (e.g. in several directories or disc drives), and will
probably be in a different place from any data files, it is necessary to provide
a special scheme for locating them.

The mechanism is that the interpreter searches a sequence of directories (or
drives) until it finds a file whose name matches the command,
(< CommandName >). The sequence or `Search Path' is set up by the user

by assigning a comma separated list of directories to the global variable
CLI$Path, and then executing the NewCommand built-in command. For
example:

(l) for DFS

-> Set CLI$Path dfs::0, dfs::2, dfs::1, dfs::3

-> NewCommand

(2) for ADFS

-> Set CLI$Path adfs:$.PanosLib, a
-> NewCommand

(3) for use with an application on ADFS

-> Set CLI$Path adfs:$.PanosLib, adfs :$.GCalLib,@
-> NewCommand

In example (l), the four floppy disc drives are searched in order, 0, 2, l, 3.
In example (2), first PanosLib is searched, then the current working
directory, although this could be the other way around. The latter case
would provide user pre-emption of system programs at the probable cost of
increased search time. In example (3), an application library has been added
to the path.

The Set built-in command has been used in the examples, although the Set
command with `var' parameter would be equivalent.

Note that the search path mechanism applies to commands only. Thus if
the search path had been defined as in Example (1) above and the following
were executed:

-> Set Dir dfs::1

-> Copy Fred -to vdu:

Copy would be searched for, but Fred must be in the current working
directory.

Default search paths are set up by the supplied !Panos command file.

Command Language

OPS Issue 1

	

2 9

Chapter 4

30

	

OPS Issue 1

4.2.3 Command Prompt

The user is prompted by the Panos prompt ->. This symbol, which is the
value of the global variable CLI$prompt may altered by use of the .set
command or set utility. The string is evaluated before printing, (see 4.8.3)
so, for example, setting it to the global variable sys$time will cause the
current time to be used as a prompt. To include leading or trailing spaces,
enclose the prompt in double quotes. For an example see section 2.7.

4.2.4 Action of the Command Interpreter

The action of the command interpreter can be summarised as follows:

1)

	

The user is prompted via the control stream, (see 4.2.3);

2)

	

A command is read from the control stream, (see 4.2.l);

3)

	

The < CommandName > is extracted, and if applicable, the alias
operation is carried out (see section 2.7.2). Non built-in commands are
searched for (see 4.2.2);

4)

	

Parameter substitution is carried out on the < argument string >, (see
4.8.3);

5)

	

The remaining action depends on the type of command:
Built-In commands are executed directly (see 4.7),
Command files are obeyed by the interpreter (see 4.8),
using the substituted argument string
Program files are run (see below) - all Panos utilities will interpret
the substituted argument string in a standard way, (see 4.9).

A program file is one in RIF format, i.e. contains relocatable machine code
as produced by the Panos linker, such a file is loaded and executed.
Program files should have the extension `-rif appended to the file name.

4.3 Arguments

The way in which the arguments following a command name are decoded
and interpreted depends on the program being run. However all Panos

utilities use standard conventions and software to promote consistency and
hence ease of use. All other programs are free to use the same scheme -
which forms the subject matter of this section.

Note that argument decoding is `defined' by the `programmer', then `used'
by the `(end-)user'. It is the latter who is of more concern in this section,
the former in 4.8.4.

4.3.1 Position and Keywords

Arguments may either be positional or attached to a keyword. It is always
legal to supply arguments attached to a keyword, but the use of position
may be restricted in any given command, usually to `common', `obvious'
arguments. Keywords, with the exception of state keywords, bind to the
argument immediately following.

For example, the following uses of the Copy command all mean the same
thing, i.e. copy file l to filet (thus overwriting it). In the examples, file l and
filet are arguments, -from and -to are keywords.

-> copy -from filel -to filet

-> copy -to filet -from file1

-> copy file1 -to filet

-> copy -from file1 filet

-> copy file1 filet

However, these are not all equally easy to read. The following example does
not mean the same, but rather the other way around:

-> copy filet file1

The following are invalid:

-> copy -to filet file1

-> copy filet -from file1

Thus positional arguments must be given in the correct order; all arguments
may be attached to a keyword in any order. The advantage of using
keywords is that it is not necessary to remember the order, but the
disadvantage is that more has to be typed.

Most commands have a small number of compulsory arguments followed by
a large number of optional arguments. It is common practice therefore,
both in definition and use, to specify positional notation for the compulsory
argument(s) and keywords for the options, for example:

Command Language

OPS Issue 1

	

3 1

Chapter 4

-> Pascal TEX -list printer:

Keywords can generally be abbreviated; the minimum abbreviation is
specified on definition, although in Panos certain conventions are employed.

Note that the "-" identifying a keyword should not be confused with that
separating a base file name from its extension.

4.3.2 Format of the Argument String

The < argument string > introduced in 4.2.l has a format as follows. For a
full, definitive specification, see the Panos Programmer's Reference Manual.
See also section 4.8.4.

Argument String

This is the string supplied by the user after the command name. It is a list of
argument groups separated by spaces.

Argument Group

An argument string comprises one or more argument groups. An argument
group is a list of one or more arguments separated by commas and
associated with a keyword. In this publication, the term will be used to
refer to the argument group plus the keyword (if present).

Argument groups may be optional or compulsory. The former are
sometimes called options. Default values for arguments may be defined,
and are adopted if not specified by the user.

Thus an Argument group is one of:

- a list of one or more arguments separated by commas
- a keyword plus a list of arguments
- a state keyword (see below)

32

	

OPS Issue I

Command Language

Argument

This is a single item with one of the argument types listed in Table 4-l.

Table 4-1 Argument Types

Type

	

Examples

string

	

"->", "6-Oct-1985"
file name (includes devices)

	

TEX-pas, printer:
integer

	

12-10,42
cardinal

	

10
Boolean

	

true, false
name of STATE keyword

	

confirm, noconfirm

A state keyword has no arguments, but has two values, essentially true if
the keyword itself is used, false if it is prefixed with NO.

Two standard state keywords are -help and -identify (see 4.9.l).

In this Guide the term argument is sometimes used loosely to refer to an
argument group, providing no confusion will arise.

Keywords

A keyword is a single word that identifies a particular argument group.
Alternatively, in some cases, an argument group may be identified through
its position, (see 4.3.l). If a keyword is given, the character `-' must precede
it (keyword `stropping'). The argument follows the keyword immediately,
except in the case of state keywords that are in effect their own argument.

Keywords may be abbreviated, (see 4.8.4), and are case insensitive.

OPS Issue 1

	

3 3

Chapter4

4.3.3 Examples of Command Lines

-> f77 -source prog -identify -opt +6

-> copy fl,f2,f3 -to vdu:

-> copy -files f1,f2,f3 -to file6 -force

In the first example:

f77

	

command name
-source prog -identify -opt + 6 argument string
-source prog

	

argument group (associated with -source)
-source keyword
prog

	

argument (file name)

-identify

	

state keyword

-opt + 6

	

argument group
-opt keyword
+ 6

	

argument

In the second example:

copy

	

command name
-from f1,f2,f3 -to vdu: argument string
-from f1,f2,f3

	

argument group (associated with -from)
-from keyword
fl

	

argument (file name)
f2

	

argument (file name)
f3

	

argument (file name)
-to keyword
vdu:

	

argument (file name)

4.4 Line Editing

During input from the terminal (on the control stream), some keys have
special meanings that enable them to edit the line being typed. Once

(RETURN) is pressed the command is executed. These special meanings
generally hold also during the execution of systems or user programs, but
not necessarily so, for example in the editor.

34

	

OPS Issue 1

Command Language

OPS Issue 1

	

3 5

A summary of these keys and their actions is given in Table 4-2. A fuller
description may be found, for example, in the BBC Microcomputer User
Guide. In addition certain keys have a special meaning within Panos; these
are listed in Table 4-3.

Table 4-2 Editing Keys

Table4-3 Special Keys

Note in particular the effect of 	ESCAPE . In general this will interrupt the
current program and return to the level above, for example to the command
interpreter. Thus this key can be used to `escape' from `incorrect'
situations.

Tab positions and function key bindings may be defined by the user by
means of the Set command.

Keys auto-repeat at a rate and delay determined by the configuration file
! Config.

4.5 Wild Symbols

Many of the commands take one or more file names as arguments forming
part of an argument group, for example as in:

Chapter 4

-> copy -from file1,file2,file3 -to BigFile

In many cases the typing will be time-consuming or unreliable. Many Patios
system programs, where appropriate, permit the use of `wild symbols' to act
as abbreviations for file names. If there were only those three files starting
with `file' in the current directory, then the above example could be
abbreviated to:

-> copy -from file* -to BigFile

Further, long and descriptive, but hard to type, single file names can be
abbreviated in this way. For example, providing there is no ambiguity, the
following are equivalent:

-> set dir Releases.Notice10

-> set dir Re*.N*10

In general, the system will expand a wild symbol (or `wild card') into a
single file name or a list of file names. The latter case will only be legal in
certain contexts such as the first one above, but not in the second.

The full list of wild symbols is shown in Table 4-4. Strictly speaking, the
first two apply to arbitrary strings, but in practice their use will be limited
to file names.

Table 4-4 Wild Symbols

?

	

stands for any one character in a name.
*

	

stands for any string of zero or more characters.
...

	

means any arbitrary pathname.

See also 2.5.5 for special symbols used in file names.

Examples are:

test-rif

	

File name with no wildcard.

$.test-???

	

Three single characters (the file extension) are unspecified.

&...

	

All objects (files or directories) which are children of this
directory (not the `&' directory itself).

$.Library.*

	

Any object in the $.Library directory.

36

	

OPS Issue 1

Command Language

Examples of use are:

-> set dir U*c

-> copy file?-* -to dfs:

-> cat adfs:$.*Lib,*-f77

4.6 Data Formats

Within the user interface of Panos, there are a number of objects that need
to be represented. In particular users will be required in input data in a
given format. In this section is a description of such formats for all objects,
or a reference to the definition elsewhere in the Guide.

4.6.1 Simple Items

Primarily simple items are the values of arguments, i.e. strings, integers,
cardinals, Booleans, and State keywords, see 4.3.2. This also includes file
names, see 2.5.l.

4.6.2 Time and Date Format

The time and/or date is used by a number of utilities.

The time format is:

< hours > : <minutes > : < seconds > : < centiseconds >

the seconds and centiseconds being optional. Either 24 hour clock or 12
hour (+ am/pm) may be used.

Examples

10:13:07:67
means thirteen minutes, seven and sixty-seven hundredths of a
second past ten.

10:13 pm
means 13 minutes past lOpm (or 22:13).

OPS Issue 1

	

3 7

Chapter 4

The Date format is reasonably flexible: `standard' and `textual' formats (and
permutations) plus some extensions are permitted, (see the Panos
Programmer's Reference Manual for a full definition.

For example:

9 Nov 85

	

1985-11-09

	

9th November 1985

all mean the 9th November 1985.
The form DD/MM/YY is not permitted as it is ambiguous (day and month
may be interchangeable).

4.6.3 VDU Characteristics

Modes

Screen Modes are represented as the cardinals 0 to 135 inclusive.

Colours

Colours, both background and foreground are represented as one of the
strings listed in Table 4-5.

Table 4-5 Colours

black
white
red
blue
green
yellow
cyan
magenta

or one of the above prefixed by `flashing-'.

3 8

	

OPS Issue 1

Command Language

Paged Mode

Paged Mode is represented by the Boolean true for paging, false for
scrolling.

4.7 Built-in Commands

Command lines beginning with a `.' (after leading spaces have been
removed) introduce commands which are built into the Command
Interpreter. These are `primitive' commands in that they carry out low level
or specialised tasks. They do not include provision for wild symbol
expansion or use of search paths. In practice they are for the programmer
(e.g. in command files); they need never be employed by the end-user.

The commands are shown in Table 4-6.

Table 4-6 Built-In Commands

. < SPACE >
If the character after the . is a space, the rest of the line is ignored.
This is useful for commenting command files.

. Delete < variable-name >
Removes the global string from the environment.

. Help
Provide help information on the built-in commands.

. key
See command files, section 4.8.4.

. NewCommand
Causes the Command Interpreter to use the value of CLI$Path to
determine the future set of known commands. This must therefore be
quoted after altering the CLI$Path, see 4.2.2.

. Obey < command file name > < arguments >
Execute the named command file with the given arguments. This
ignores the search path, i.e. a full path name must be given. This
could be used, for example, to execute $.!Panos.

OPS Issue 1

	

3 9

Chapter 4

. pwd
Prints the current working directory.

. Quit
Leave Panos.

. Run < file name > < arguments >
Run the relocatable image in the named file passing it the given
arguments. This ignores the search paths, i.e. a full path name must be
given.

. Set < variable-name > < value >

Set the global string variable to the given value. A null value "" will
cause the variable to be deleted from the environment.

. swd < path >
Sets the current working directory, see section 2.5.5.

. wait
This command causes the command interpreter to wait until RETURN

is pressed before continuing. The main application is within command
files which interact with the user; the `install' command files which
install Panos onto the DFS employ this mechanism.

Examples

-> . comment

-> obey adfs:$.!Panos

-> run nfs:$.stamp-rif

-> swd dfs::1

-> set cli$stop -1

. set cli$path, newcommand and swd are often used together, for example
after these commands,

-> set cli$path dfs::0

-> newcommand

-> swd dfs::1.

the command:

-> cat data-dat

is equivalent to typing:

40

	

OPS Issue 1

Command Language

-> dfs::0.cat-rif dfs::1.data-dat

4.8 Command Files

Command files permit the user to store commonly occurring sequences of
commands in a file and execute that sequence by issuing a single command.
In this way the actual command sequence can be hidden to promote ease or
convenience of use. Panos command files support command sequences,
parameter passing and procedural calls (i.e. they may be nested).

The `use' of a command file is no different from using any other command;
indeed this is a primary objective. This chapter is concerned more with the
` definition' or writing of such files. Writing command files is a practical
proposition for end-users as well as programmers, although there are
complexities to be overcome in the more sophisticated examples.

Organisation of this Section

In sub-section 4.8.l the fundamentals of writing command files are
presented along with some simple examples. Writing more complex
command sequences involving the definition of arguments is more difficult
and forms the subject matter of the remainder of this section.

4.8.1 Basic Facilities

If the name of a command typed in response to the Panos prompt is not a
built-in command, it is assumed to reside in a file somewhere on the filing
system.

If the file contains commands (indicated by the first character being a $
character) the commands are read and executed, and the file is said to be a
command file. Command files should have the extension `-cmd' appended to
the base file name.

Commands contained in a command file may be built-in commands,
executable programs, or calls to further command files. Each line in a
command file must start with $, and may be followed by any number
(including zero) of spaces.

OPS Issue 1

	

4 1

Chapter 4

42

	

OPS Issue 1

The use of help has a different interpretation in command files from that
documented in 4.7, (see 4.8.4).

If the global variable cli$echo is set to `true' the command lines will be
,echoed' on the screen as they are obeyed.

Termination Conditions

A command file is obeyed until some termination condition occurs. The
first and simplest case is that the command sequence is completed.

Secondly, a user may terminate the execution by pressing the

	

SCAP

	

key.
In the case of nested command files, the use of ESCAPE during execution of
a command terminates that command and returns control to the level
above.

Thirdly, under certain conditions, an `error' during the execution of a
program forming a command sequence will terminate that sequence. The
mechanism is that each program returns a result code which is assigned to
the global variable CLI$ResultCode. If the value of this is more negative
than the value of the global variable CLI$Stop then the command sequence
will be terminated. If not, then the next command in sequence will be
obeyed. The default value of CLI$Stop is -64, i.e. stop on errors, but not on
warnings.

See also Chapter 5.

Simple Examples

The examples demonstrate simple uses of command files, the first to set up
a personal environment, the second to configure the system for an
application.

$ Identify !Mark 21st August 1985

$ Set Alias$ls	 "Catalogue -full -header"

$ Set Alias$ed

	

"edit -buffer 200000"

$ Set Alias$ty

	

"copy -to vdu: -from"

$ Set Alias$pr

	

"copy -to printer: -from"

$ set Alias$li

	

"lisp -image $.PanosLib.Lispimage -identify"

$ Set Program$Verbosity 99

$ Show var sys$*

$ Identify ADFS !GCaL Version 1.00/01

$ Help Initialises GCAL on ADFS

$ set gcal$Lib

	

adfs:$.GCaLLib

$ Set Cli$Path

	

adfs:$.PanosLib, adfs:&.$.GCaLLib,@
$ NewCommand

$ set File$-gcal

	

_gcal.-

$ set File$-gout

	

-gout.-

$ set File$-glib

	

_glib.-

$ set File$-gfl

	

_gfl.-

$ set File$dfs:-gcal

	

u.-

$ set File$dfs:-gout

	

V.-

$ set File$dfs:-glib

	

g.-

$ set File$dfs:-gfl

	

u.-

4.8.2 Parameters with Command Files

The above simple examples illustrate the use of command files without
arguments. To be more useful it is necessary to have mechanisms by which:

(a) the user can supply an argument string with the name of a command
file

(b) a legal format for that string can be defined by the author of the
command file

(c) the system can decode the argument string and check it for legality,
(with the same rules as in programs)

(d) the values of arguments can be passed onto the individual commands
that make up the command file and used as arguments to them

In this section an illustration of the above mechanisms is given. The
example is a simplified version of the f77 (FORTRAN 77 compiler)
command which hides from the user the need to call two separate programs
in sequence. These are the front-end (f77fe) and the code generator (f77cg).

$ Identify Fortran Command file 1.10/01

$ key source/e-f77 list/s opt/k[+]

$ Help

$ Help -Source

	

Source file

$ Help -List

	

Enable listing

$ Help -Opt

	

Compilation options

$ Help

Command Language

OPS Issue 1

	

43

Chapter 4

$ set CLI$Stop -64

$ f77fe <source> <List> -opt <opt>

$ f77cg <source> -opt <opt>

The following are sample uses of the above command file definition:

-> f77 Spice

-> f77 Spice -list

-> f77 -source Spice -List -opt +tW0

This works as follows:

The user types a command with its associated argument string in the usual
way (a).

The lines `.help' and `.identify' simply provide the user with information.

The line `.key...' is an example of a keystring. This defines the argument
string format (b). It specifies that there should be three argument groups,
source, list and opt. The first is a file name (/e), the second is a state
keyword (/s), and the third is a string, but must be supplied with a keyword
(/k).

The command interpreter checks the actual argument string against this
definition (c).

The actual arguments supplied by the user are substituted for the place
markers shown in angle brackets, (see (d)). For example the argument
associated with the keyword -source is substituted for < source > .

Therefore the three examples of use translate into:

f77 Spice

-> f77fe Spice-f77 -opt +

-> f77cg Spice-f77 -opt +

f77 Spice -List

-> f77fe Spice-f77 -List -opt +

-> f77cg Spice-f77 -opt +

f77 -source Spice -List -opt +tWO

-> f77fe Spice-f77 -List -opt +tW0

-> f77cg Spice-f77 -opt +tW0

44

	

OPS Issue I

Command Language

4.8.3 Parameter Substitution

As outlined in 4.2.4, the Command Interpreter performs parameter
substitution on all lines. This is carried out on all argument strings but
before the arguments are decoded by the program or command file.

Its main significance is in command files, although it is of wider
applicability. See the Panos Programmer's Reference Manual, Chapter 3 for
full details.

Parameter substitution enables actual argument values supplied on the
command line by the user to be substituted for formal values within a
command file. In addition global values (from global variables) may be
substituted.

The following rules are applied:

-

	

a parameter is a word enclosed in < > brackets. Leading and trailing
spaces are stripped.

-

	

if in a command file then the parameter word is first looked for in
the decoded arguments derived from the'. Key String', (see 4.8.4). If
there is a first line beginning with `.key', then a string representation
of the argument is substituted for the parameter in the line.

-

	

the parameter word is looked for in the global environment strings. If
found its value is substituted.

-

	

if no substitution has occurred then an error is generated.

4.8.4 Argument Decoding and the Keystring

It is possible to include argument decoding in command files, similar to that
provided by the Panos run-time library. An abbreviated account is given in
this section; for full details, refer to the Panos Programmer's Reference
Manual). To make use of this facility.key must be included as the FIRST
line of the file (comment lines are not excluded from this rule). For
example, see 4.8.l.

The keystring describes the arguments which the program expects. This
process is illustrated in figure 1.

OPS Issue 1

	

45

Chapter 4

Figure 1 Argument Decoding

The Keystring

A keystring is a sequence of keywords, (separated by spaces or commas)
which are qualified by control characters called option specifiers (e.g. /k
and /e in the example of 4.8.l). These determine the type of keyword, and
the number and type of arguments that may be associated with it.

Also associated with each keyword is an optional default argument list. This
is used if the user does not supply any arguments on the command line for
that keyword. The case of the keyword determines the minimum
abbreviation. Upper case specifies compulsory characters. Thus NAme is
matched by NAME, NAM, NA, but not N.

Option Specifiers

There are three classes of option specifier:

l) Quantity option

This is used to indicate the number of arguments which may be associated
with the keyword. There are three formats:

46

	

OPS Issue 1

Command Language

/ < number >

	

This specifies that at most < number > arguments
may be associated with the keyword.

/ _ < number >

	

This specifies that exactly < number > arguments
must be supplied for the keyword.

/?

	

This specifies that any number of arguments can be
supplied.

If no quantity option is supplied then /l is assumed, i.e. keywords are
expected to have one argument by default.

Some examples are:

Keystring

	

argument groups matching

INPUT/3

	

-input x,y,z
-INPUT x
-input

INPUT/=3

	

-input x,y,z

INPUT/?

	

-input w,x,y,z
-Input

INPUT

	

-input x

2) Type option

This option indicates what type of arguments are expected to be associated
with a given keyword. Possibilities are:

/I

	

Integer. This indicates that integer arguments will be
used with the keyword.

/C

	

Cardinal. This indicates that cardinal (positive integer)
arguments will be used with the keyword.

/B

	

Boolean. This indicates that two argument values are
possible: TRUE or FALSE.

/E[-ext]

	

Extant. This means that the keyword's arguments are
expected to be files residing on the filing system. A
check is made that the names provided exist. In
addition, an optional extension may be given which is
automatically appended to file names which do not
have an extension already.

OPS Issue 1

	

47

Chapter 4

/R

	

Rest of argument string. The value will be the string
made up of all the characters to the end of the
argument line with no further interpretation.

/L

	

Literal string; that is the string made up of all the
characters up to the next explicit keyword with
leading and trailing spaces removed.

If no type option is supplied then the keyword is interpreted as a plain

string.

Some examples are:

Type

	

Keystring

	

argument groups matching

Integer

	

POSITION/I -position 128
-position 16_1A
-position -3024

Cardinal

	

LENGTH/C -length 128
-length 16-1A

Extant file

	

-SOURCE/e-f77

	

-source prog (value is prog-f77)

-source prog-f77 (value is prog-f77)
prog (value is prog-f77)

SOURCE/e

	

-source prog (value is prog)
-source prog-f77 (value is prog-f77)

3) Keyword Presence

There are two options to control the `parsing' of the key string, compulsory
argument, and compulsory keyword, plus three to control the detection of
keyword names.

Compulsory /A

	

This implies the keyword must have at

Argument

	

least one argument (although the
keyword itself need not occur).
The keyword cannot be used with a
default argument list, (see below).

Compulsory /K

	

This means that the keyword can only

Keyword

	

have arguments if the keyword itself

is also given.

Presence

	

/P

	

True if the keyword is present, false otherwise.

4 8

	

OPS Issue I

Command Language

Non-Presence

	

/N

	

Permits NO to be pre-fixed to /P options.

State

	

/S

	

This indicates a state keyword. These
don't have arguments supplied by the user,
but are interpreted as TRUE if cited in
the command line and FALSE otherwise.
Such arguments can take neither
default arguments, quantity options,
nor the /A option.

Equivalent to /K/P/N/ = 0

Examples:

OBJECT/a/e-aof

	

-object x
-object x-aof
x
x-aof

LIST/k

	

-list 1file
but NOT Ifile

LIST/s

	

-list

	

value is TRUE
-nolist or < blank > value is FALSE

Default Values

A value in square brackets `[' and `]' in a keystring is interpreted as a default
value, i.e. is used if the user does not provide any.

Example:

FILES/?[f1,f2,f3]

	

-files oneF,twoF

	

value is oneF,twoF
-files

	

value is f1,f2,f3
(blank)

	

value is f1, f2, f3

/S keywords have implicit default arguments.

/A keywords cannot have default arguments.

OPS Issue 1

	

49

Chapter 4

Assignment of arguments to keywords

This sub-section describes how the user-supplied arguments are interpreted
using the programmer-supplied keystring. A more detailed description is
given in the Panos Programmer's Reference Manual.

The rules for interpretation are:

a)

	

Argument groups qualified by the keyword name can be supplied in
any order.

b)

	

Argument groups not qualified by the keyword name are assigned
(essentially as values to keywords) from left to right.

Note that, in this process, /K (compulsory keyword) and /S (state)
keywords in the keystring are ignored.

c)

	

The character'-' must be immediately followed by a keyword name.

d)

	

If the user does not supply a value, and a default value is present in
the keystring then that default value is assigned to the keystring.

e)

	

The keyword names -help and -identify are special, in that the
program will always respond to them, even if the rest of the
command line does not make sense. This allows users to type, for
example, f 77 -He l p and receive some help information. It is not
necessary to specify these keywords explicitly in keystrings.

4.9 Standard Conventions

This section describes the conventions adopted by all supplied programs for
argument strings. Users and software developers are free to adopt whatever
conventions they wish but are encouraged to adopt those described here.

There are many arguments that the systems programs have in common. To
avoid duplication in the individual descriptions, these standard arguments
are described here.

Square brackets indicate that the keyword is optional (i.e. positional
notation may be used). Upper case signifies minimum abbreviation.

5 0

	

OPS Issue 1

Many of the options are state keywords, i.e. are true if the keyword is given,
or false if the prefix NO is followed by the keyword, for example -Confirm
is true, -NoConfirm is false. The action is carried out if the result is true.

If the state keyword is not given, then the default value is used. The default
value is false unless otherwise stated, but see 4.9.3.

In 4.9.l certain standardly interpreted (but not necessarily universal)
arguments are listed. In 4.9.2 the usage of such arguments in certain classes
of system program is described.

4.9.1 Standard Arguments

[-Help]
Typing -Help on the command line will make the program print a
summary of its arguments, and examples of their use. If this argument
is given, the program itself is not executed.

[-IDentify]
Issuing this option prints the full path-name of the program, followed
by its version number. The program is executed.

[-ERRor] name
`Errors' may be generated in a variety of ways, for example, a file name
may be misspelt. The error messages (and any verbose information
generated by the program) are sent to a Panos stream called `error:',
(see 2.2). Usually, this stream is associated with the screen. However,
errors can be redirected to other files or devices by following the
keyword -error with a name, e.g. -error printer:

[-CONTrol] name
This is similar to -error but is used to redirect input from the currently
selected control stream to another stream, (see 2.2). Any program
which issues prompts reads the reply from the control stream. Usually,
this stream is associated with the keyboard (`kb:'). Prompts are written
to the output stream associated with the control stream, or the screen
if there is no associated stream.

[-Verbosity/Verbose]
Feedback arising from actions performed by the program e.g.
deletions, file creations, copying etc. i s given on the error stream if
-Verbosity is present or the value of global variable Program$Verbosity

Command Language

OPS Issue 1

	

5 1

http://etc.is
http://etc.is

Chapter 4

is greater than 0. Only one-line error messages (usually from the
system) are sent if the verbosity level is zero. The higher the level of
verbosity, then the more unimportant operations are reported. The
default value is 3.

[-Confirm]
If -Confirm is present or Program$Confirm is set to `True' then
confirmation of the action about to be taken by the program (and any
unforced deletion necessary to perform that action) will be required.
The default setting for this argument is `noconfirm' except in the delete
utility, but see 4.9.3.

[-Force]
If `-Force' is present or Program$Force is set to `True' then any locked
files will be unlocked. The `-Force' keyword must be specified to
overwrite existing files. Compare this with `-Confirm', which will
overwrite existing files, but will request confirmation before doing so,
but see 4.9.3.

[-Abandon]
If `-Abandon' is present or Program$Abandon is set `True' then the
program will be exited if any error is detected, otherwise it will
continue until a fatal error occurs, but see 4.9.3. This is of particular
use in command files. See also 5.4.

[-INput]
If input to the program is read from the input stream, input: (see 2.2),
then use of this option enables it to be redirected so that it is read from
the specified device or file. By default input: is the keyboard.

[-FROM]
A synonym (alias) for -input

[-OUTput]
If output from the program is sent to the output stream, output: (see
2.2), then use of this option enables it to be redirected so that it
appears on the specified device or file. By default output: is the screen.

[-TO]

A synonym (alias) for -output

5 2

	

OPS Issue 1

4.9.2 Usage of Standard Arguments

All Programs

All programs use the following (see 4.9.l):

-help
-identify

They are interpreted in a special way by the argument decoder so it is not
necessary to specify them in a keystring.

Utilities

In this context, utility program means those described in Chapter 6. Most of
these utilities use the following (see 4.9.l):

-help
-identify
-error
-control
-verbosity
-confirm
-force
-abandon

Language Compilers

For details of the action of each compiler, see the relevant language
reference manual. BBC Basic is an exception since it does not use Panos.

All compilers use the following (see 4.9.l):

-help
-identify
-error

In addition, most compilers use the following:

Command Language

OPS Issue 1

	

5 3

Chapter 4

-source

	

for the source text
-aof

	

for the object module
-list

	

for the source listing

Compilers follow a set of rules for processing the file extensions:

l.

	

If an extension is given in the keystring then it will be appended to
the file name if the user supplies no extension.

2.

	

The value of the argument is the file name with the extension added.

The compiler is expected to generate names for other files required from the
source file name with its extension removed.

For example, using the f77 compiler:

The extension used for source files is `-f77'

-> f77 myprog

This command compiles the FORTRAN source in myprog-f77 and places
the object output in myprog-aof.

-> f77 myprog-txt -list

Compile the FORTRAN source in myprog-txt place the object output in
myprog-aof and the listing in myprog-lis.

-> f77 myprog -aof temp -list printer:

Compile the FORTRAN source in myprog-f77 place the object output in
temp and send the listing to the printer.

4.9.3 Global Control

The utility programs all take a number of options as described in 4.9.l.
Many options have default values. For example, overwriting a file will by
default require confirmation. This may not be to the user's taste.

These default values may be changed by the user through the use of
PROGRAM$... global variables, (see 2.7). This facility enables users, either
temporarily or permanently, to customise the global behaviour of the
system. In the example above, the default may be changed to no
confirmation for all programs thus:

5 4

	

OPS Issue 1

-> set var PROGRAM$Confirm FALSE

This mechanism governs global behaviour. Local behaviour within a single
invocation of a command can of course be defined by means of the option.
For example, the use of feedback may be governed for all programs by
setting the value of PROGRAM$Verbosity, or for a single program through
the -Verbosity option when issuing the command. The latter always takes
precedence over the former.

The PROGRAM$ variables are listed in Table 4-7.

Table 4-7 PROGRAM$ Variables

PROGRAM$ Verbosity

	

Cardinal
PROGRAM$Help

	

Boolean
PROGRAM$Identify

	

Boolean
PROGRAM$Force

	

Boolean
PROGRAM$Confirm Boolean
PROGRAM$Abandon Boolean

Command Language

OPS Issue 1

	

5 5

5 Feedback and Errors

5.1 Introduction

Context

Feedback is given to the user for a number of reasons, usually to provide
information on the state of the actions being carried out. A particular form
of feedback is notification of errors. Often, an error condition will
terminate the current action.

Error handling forms the topic of Chapter 2 of the Panos Programmer :s

Reference Manual.

Organisation of this Chapter

In this chapter, the different ways in which errors are reported forms the
topic of the first section. This is followed by a description of the ways in
which feedback may be given. Then comes a summary of the ways in which
the user may control the effects of errors and perhaps recover from them.
Finally, there is a summary of the help facilities.

5.2 Error Messages

In this context, an error is taken to be a condition that ordinarily results in
the termination of a system or user program. Generally these are the `fault'
of the user of the program.

The system reports different classes of user error in a number of different
ways.

In some cases the `error' is considered as no error at all, perhaps it is the
null case. No error message is given. For example:

OPS Issue 1

	

5 7

Chapter 5

-> show var NoVar

In other cases the running program will detect the error, for example, a
filename may have been mistyped:

-> copy NoName -to vdu:

Error in copy : failed to find 'NoName'

In further cases the error may be detected and reported by a library
procedure called by the running program. In such a case a message is given
preceded by three + signs. The Panos library module responsible identifies
itself but this is unlikely to be of interest to the typical user. For example:

-> set var sys$time xxx

+++ Can't set 'sys$time' - reserved variable

+++ Detected by module GLobaLString

-> copy -NotKey NoName -to vdu:

+++ Keyword '<NotKey>' not known

+++ Detected by module Parameter

Compile time and run time error messages from user programs under
development are described at length in the relevant language reference
manuals.

A full list of Panos error messages is given in Appendix A of the Panos

Programmer's Reference Manual

5.3 Feedback

Error messages are a particular form of feedback. Other forms of feedback
include warnings, or simply the commentary given showing progress with
or completion of an action. Although this commentary can be of value,
especially to inexperienced users, it can be tedious. Therefore in Panos the
user has some control over its `verbosity'.

The command option -Verbosity and the global variable Program$Verbosity
(see 4.9.3) are conventionally used to govern whether the program provides
a commentary through strictly unnecessary but reassuring feedback. The
level of warning and error message reporting may also be set in this way.

5 8

	

OPS Issue 1

Feedback and Errors

5.4 Error Control

There are a number of ways in which users can control the way in which
errors are processed. Mostly, these are documented elsewhere, but
referenced here.

Abandon

-abandon and PROGRAM$Abandon (see 4.9.l) are used by the utilities to
determine whether a single error condition should terminate the invocation
of the command. For example, if a list of files were to be copied, should the
remainder be copied if one does not exist. The result code (see below) will
be set accordingly.

Command File Termination

The global variable CLI$Stop (see 4.8.l) is used to determine whether a
command file should terminate following an `error' in one of the sequence
of commands.

Verbosity

-verbosity (and PROGRAM$Verbosity) (see 4.9.l) control the level of
warnings and other feedback given.

Program Results

The global variable CLI$ResultCode conventionally takes on one of the
following values on completion of a program:

+ ve

	

available for users
0 to -63

	

warnings
-64 or less

	

errors

Command files are terminated if this value is more negative than the value
of CLI$Stop.

OPS Issue 1

	

5 9

Chapter 5

Event Handling

Both asynchronous and synchronous events (e.g. errors) can be trapped by
the user program and suitable action taken. For details see 2.6 or the Panos

Programmer's Reference Manual.

ESCAPE

Pressing the ESCAPE key is an asynchronous event. Conventionally it
returns control to the calling program.

5.5 Help Information

On-line help information is provided in a number of ways.

Help Command
The Help command describes the usage of the program given as its
argument. For example, to gain help on the use of the linker, type:

-> Help linker

Typing Help without an argument lists all the system programs (for
which individual help exists).

Help Option
Exactly the same message as above can alternatively be obtained by
use of the -help option (see 4.9.l). For example:

-> Linker -help

Note that standards exist for the form of such help messages.

Built-In Help
For help on built-in commands type help (see 4.7).

Editor Help
The editor has a special help system, see 7.6.l.

60

	

OPS Issue I

6 Utilities

6.1 Introduction

Context

Panos relies upon utilities to perform most tasks. This approach has the
advantage that Panos can be enhanced simply by writing new utilities to
perform a particular function.

The utilities provided as standard with the system are described in this
chapter with the exception of the editor and linker which are in Chapters 7
and 8 respectively.

There is also a small set of built-in commands which can perform some of
the same tasks as the utilities; these have specialised uses, and are
documented in section 4.7.

Conventions in this Chapter

A list of argument (group)s is given for each utility. All keywords are
optional (and therefore enclosed in square brackets); however, the
arguments which they refer to may not be optional, e.g. the logon utility
does not require the keyword `-as' to be stated, but logging on details must
be specified.

Each utility has its default settings for state keywords. For example, the
delete utility has `-confirm' set by default, although in others it is
`-noconfirm'.

The options listed in 4.9.l are available for almost all the utilities in this
chapter, and are therefore not described further.

Demonstration

A selection of the utilities is shown in figure 2.

OPS Issue 1

	

6 1

Chapter 6

Figure 2 Utilities Demonstration

Organisation of this Chapter

Each utility is simply listed in turn, in alphabetical order.

There are no special sections on command language, feedback and so on
since the standards described in earlier chapters apply. The utilities are
installed and configured as part of Panos, see Chapter 3.

6?

	

Opq TS411P 1

6.2 Access Command

This utility allows the user to change the access permissions of a list of one
or more files.

Concepts

See 2.5.4.

General Form

-> access arguments

Arguments

[-FILEs] file names
The list of files to be affected is optionally preceded by the -FILEs
keyword. Wildcards may be used.

[-ATTRibutes] attributes
The attributes (permissions) are optionally preceded by the
-ATTRibutes keyword. They depend on the physical filing system and
take the same format - (see the relevant filing system user guide) The
utility will not enable the `E' attribute to be set on the ADFS and will
not affect files which have this set.

[-BEFORE] date
Only the files in the -FILEs list with no datestamps or datestamps
before the given date will be copied. Dates can be given in most
unambiguous formats, and optionally include a time, e.g. Thursday
20th June 84 8:30am. See 4.6.2 for a definition of the format. Note that
`Today' is a valid date. If no time is specified then the start of the day
is taken.

[-AFTER] date
See -BEFORE (substituting after for before).

The standard arguments for utilities are also available, see 4.9. t-2.

Utilities

OPS Issue 1

	

6 3

Chapter 6

Examples

-> access Dave-pas rw/r

-> access * rw/r

-> access -files fred,jim,sheila -attributes rl/ -after 10th-mar-81

-> access -file jam wr

64

	

OPS Issue I

Utilities

6.3 Catalogue Command

This utility obtains information about files. The amount of information
printed can be varied from a simple list of file names, to complete
pathnames with the associated file information (access permissions, file
creation date etc). This utility is shortened (aliased) to `cat' in the !Panos
start-up files provided with the system.

The exact form of the information depends on the filing system.

See figure 3 for a demonstration.

Concepts

See 2.5.

General Form

-> Catalogue arguments

-> Cat arguments

The first form is for the ADFS and NFS only.

Arguments

[-FILEs] file names
A list of zero or more files or directories to catalogue. The normal file
name conventions apply (i.e. wildcards may be used etc.)

[-Depth] n
Controls the depth of nesting of the listing. The keyword is followed
by a number n which gives the maximum level to which directory
contents are expanded in the filing system hierarchy. A value of zero
gives no expansion. The default is one.

[-FULL]
Gives file attributes in addition to the name. This information includes
access permissions, date of creation, and whether the file is a directory.

OPS Issue 1

	

65

Chapter 6

[-Header]
Causes the pathname of the directory to be printed just before the list
of files it contains.

[-COLumns] n
Forces the output into n columns. By default the number of columns is
chosen according to the longest name to be output. This option has no
effect if -full has been specified.

[-BYName]
Sorts the output into strict alphabetical (ASCII) order.

[-BYDate]
Sorts the output into chronological datestamp order. Unstamped files
are considered to be the most recent, and are sorted alphabetically.

[-Reverse]
This reverses the order of output, after any sorting option has been
considered.

[-TO] name
See 4.9.l.

The standard arguments for utilities are also available, see 4.9.l-2.

Examples

-> cat

-> cat lib

-> cat

-> cat *-f77 -to printer:

-> catalogue $...

-> cat *-f77, *-aof

-> cat lib??? -bydate -depth 2 -full

The 1 st example lists the current directory.
The 2nd example lists a directory called lib (in the current directory).
The 3rd example lists all objects (files and directories).
The 4th example lists all Fortran files on the printer.

66

	

OPS Issue 1

Utilities

Functions

By default, output is ordered in the natural order of expansion. That is,
directory contents are listed alphabetically, and any listing of subdirectory
contents occurs recursively at the end of the parent directory.

The -FILEs argument is an optional list of files to be listed. As with all
' file-type' argument groups, the names are separated by commas, and can
include wildcards. If a file name is a directory, its contents are listed, rather
than the name of the directory (but see -Depth).

The 1st example differs from the 3rd in that any sub-directories listed by the
3rd will have their contents listed, not their names. For example, suppose
that, on the ADFS, the current directory (which is, for instance, the
start-up directory `&') contains two files, linkfile and libdir, of which libdir
is a directory containing the two files Tred' and `petunia'. Catalogue on its
own will list:

libdir linkfile

The command `cat *'will list:

linkfile

Directory: 'ADFSA.libdir.fred' Date: 07 May 87 10:00:07

Directory: 'ADFSA.libdir.petunia' Date: 07 May 87 10:00:07

Note that the non-directory files in the list are given first, followed by the
contents of any directories.

The option -Depth is used to prevent (or enable) directories' contents being
listed. As mentioned above, if a given file name argument is a simple file,
catalogue lists that name. If it is a directory, the contents of that directory
are listed instead of its name. The -Depth option controls the depth to
which directories are listed.

To prevent directories from being expanded into their contents, use
- Depth 0. Using the structure above, typing

OPS Issue 1

	

67

Chapter 6

-> catalogue * -d 0

will prevent lib from being expanded and will display:

libdir linkfile

The numeric argument after -Depth specifies how deep into the hierarchy
catalogue should look. The default is -Depth l, which causes it to list
directories one level down from the argument directory. Greater values
cause it to look further down the structure. Taken to the extreme, this can
be used to list the whole structure of the disc, for example:

-> catalogue $ -Depth 99

will list files down to level 99 (in practice, ten is above the limit that people
will use) starting from the root, $.

Figure 3 A Detuoustratiou of Catalogue

The -Header argument causes catalogue to print the names of directories
before their contents. For example, typing

6 8

	

OPS Issue 1

-> catalogue -header

with the example file structure would give:

Directory: 'adfs:&' Date: 02-feb-87 15:47:56

libdir linkfile

Utilities

OPS Issue 1

	

69

Chapter 6

6.4 Configure Command

This utility allows the user to set up configuration options, i.e. alter the
value of !Config.

Concepts

See 3.3.3.

General Form

-> Configure arguments

-> Config arguments

The latter form is for DFS, the former for ADFS or NFS.

Arguments

[-New]
If this optional parameter is specified, a new !Config file is created in
the current directory. An error message is therefore not given if there
is no !Config file already in existence.

The standard arguments for utilities have no function.

Examples

-> configure

-> configure -new

Command Language

The utility consists of two modifiable screen pages, the second page
containing attributes which should be altered with care.

A special command language is used with this utility. t and I are used to
select a new item. Use - or i to select a new value for that item.

7 0

	

OPS Issue I

Help information about the modifiable characteristics is accessible on-line,
and visible at the top of the screen. To move from page 1 to page 2, press
SHIFT - +O, i.e. whilst holding

	

SHIFT , press O+

	

(CU to get back to page
1).

Functions

If the !Config file is updated then the old file is renamed as !OldCon; this is
as a safeguard in case the updated !Config file has been altered erroneously
(for example, the auto-repeat rate may have been set too high), making it
very difficult to re-create !Config.

When `Configure' is used, the file !Config is overwritten. The utility looks
for an old version to update, searching (in this order) in the current
directory, the start-up directory `&', and the root directory `$'. If no !Config
is found, an error is given.

Utilities

OPS Issue 1

	

7 1

Chapter 6

6.5 Copy Command

This utility takes a source list of one or more files, directories, and/or
devices, and copies them to a destination, either a file or a directory.

Concepts

See 2.5.

General Form

-> Copy arguments

Arguments

[-FROM] name
The -FROM keyword may optionally precede the list of objects to be
copied. See 4.9.l.

[-TO] name
This optional keyword is followed by the destination file name,
directory name or device name. The default is to output: (usually
vdu:). See 4.9.l.

[-Delete]
If this switch is specified then the source file will be deleted after the
copy has taken place (in effect renaming across filing systems).

[-CONTENTs]
If the source list contains a directory then the directory contents will
only be copied if -CONTENTs is specified.

[-Exact]
Usually the file created by `copy' is datestamped with the current date.
If this flag is specified, the datestamp information from the source file
is used instead. When concatenating, the datestamp of the first file in
the source list is used. This option is also used when copying
non-Panos files, i.e. when the `date stamp' is actually a load/execution
address. See also 2.5.3.

72

	

OPS Issue 1

Utilities

[-AFTER] date
This argument takes a time and date string which when specified,
means that only files with a later datestamp will be copied. This is
useful for only backing up recently changed files. Note: this applies to
files with datestamps, those without will be copied regardless. See 4.6.2
for the date format.

[-BEFORE] date
See -AFTER (substituting before for after).

The standard arguments for utilities are also available, see 4.9.l-2.

Examples

-> Copy Filet -to Filet

-> Copy $.OldDir.File1 -to $.NewDir

-> Copy Filet

-> Copy dfs:File1 -to @
-> Copy dfs::O.File1 nfs:

-> copy -from kb: -to newfile

-> copy -from adfs:thisdir -to nfs:thatdir

-> copy *-cmd -verbosity 3

-> copy *-rif -to old*-rif -after 15th August 1984 7:30 am

-> Copy dfs::2.*-pas -to nfs:&.newfiles -after today

-> copy * to adfs:newdir -confirm

-> copy kb:first,kb:second -to adir -force

-> copy AnExecFile -to dfs::0 -exact

Functions

The action taken depends on the contents of the source and destination lists.
If no destination is specified then the source is copied to the currently
selected output stream which is usually (and by default) the screen, (3rd
example).

The most typical use of this utility is moving files between filing systems, or
from one location to another within a directory structure.

If the destination is not an existing directory, then the source files are
concatenated into it, e.g. as in:

OPS Issue 1

	

73

-> Copy -from File1,File2 -to &.Bothfiles

Beware when copying the entire contents of a directory into one other
object: if this is not an existing directory, then a very large single file will be
created. For example,

-> Copy Direct.* -to NotaDir

will concatenate all files in directory `Direct' to one file `NotaDir'.

The -CONTENTs keyword causes the directory's entire tree structure (if
the source is a directory), to be copied to the destination directory or device
retaining the same structure and names.

If both the source and destination are wildcarded, then matched
wild-carded parts in the source list are substituted for the corresponding
wild-carded parts in the destination. This facility can be used for backing up
certain files, e.g.

-> copy *-rif -to old*-rif

Chapter 6

74

	

OPS Issue I

6.6 Create Command

This utility allows the user to create directories (or files). It may be viewed
as a `Copy' utility which doesn't take any source files. It creates a list of new
files or directories, optionally of a given length. Its primary use is to create
new directories on a hierarchical filing system.

Concepts

See 2.5.

General Form

-> Create arguments

Arguments

[-FILEs] file names
This is the list of file(s) to be created.

[-Dir]
If this argument is quoted the file created will be a directory.

[-Size] n
This is the size in bytes with which a (non-directory) file should be
created. The default is zero bytes, i.e. a null file.

The standard arguments for utilities are also available, see 4.9.1-2.

Examples

-> create neudir -dir

-> create some,many -verbose 1

-> create text -size 64

Utilities

OPS Issue 1

	

75

Functions

Chapter 6

If -Force is set then any part of the path name which does not exist will be
created.

7 6

	

OPS Issue I

Utilities

6.7 Delete Command

This utility enables the user to delete one or more files or directories.

Concepts

See 2.5.

Geiieral Forin

-> Delete arguments

Arguments

[-FILEs] file names
This is a list of one or more file names. As usual, wildcards may be
used in place of an explicit list. Directories may only be deleted if they
are empty.

[-BEFORE] date
Delete the file only if its datestamp is before the date and time
specified (or if it does not have a valid datestamp). See 4.6.2 for details
of the date format.

[-AFTER] date
Delete the file only if its datestamp is after the date and time specified
(or if it does not have a valid datestamp). See 4.6.2 for details of the
date format.

The standard arguments for utilities are also available, see 4.9.l-2.

Examples

-> delete oldfite-f77

-> delete * -noconfirm

-> delete *-rif -force

-> delete * -before 15-Aug-85

OPS Issue 1

	

77

Chapter 6

-> delete oLdfiLe-*

Functions

Delete takes a list of file names to delete. Usually locked files will not be
deleted, but this may be `forced' using the standard `-Force' option. Note
that files specified on the command line are deleted in reverse order, so to
delete an entire non-empty directory including both the directory and its
contents, type

-> Delete dir,dir...

NOT

-> Delete dir...,dir .

By default, the standard keyword `-Confirm' is always set, i.e. confirmation
is always expected before an object is deleted. To override this, use the
`-NoConfirm' keyword.

78

	

OPS Issue 1

6.8 Echo Command

This utility allows the user to perform parameter substitution on its
arguments thereby evaluating them.

Concepts

See 4.8.3.

General Form

-> Echo arguments

Arguments

[-Lines] or [-Nl]
Blank lines can be printed after the material has been echoed by either
specifying -Nl (newline) or -lines for however many blank lines are
required.

[-TO] name
Usually `echo' sends its information to the standard output device, i.e.
the screen. By specifying this option the user can cause the output to
be sent to some other device, e.g. printer: or a file.

The standard arguments for utilities are also available, see 4.9.l-2.

Examples

-> echo a few words

a few words

-> echo cli$path's value is <cli$path> -nl

cli$path's value is dfs::0, dfs::2

OPS Issue 1

	

79

Utilities

Chapter 6

Functions

This program takes a single argument (which may include spaces and
punctuation such as commas) and prints it on the screen. The command
interpreter carries out parameter substitution, and therefore global variables
and arguments in a command file may be evaluated.

The following command file illustrates this process. It provides a simple
version of the `catalogue' utility.

$ key files/e/?C*7
$ echo <files>

8 0

	

OPS Issue 1

6.9 Logon Command

This utility allows the user to log on to a network file server, and is thus the
Panos equivalent of the *I AM command.

Concepts

See Econet File Server User Guide.

General Form

-> logon arguments

Arguments

[-AS] logging on details
This keyword (itself optional) is followed by the station number, user
id and password (or subset thereof), constituting the body of the
logging on command.

[-Pass] password
If this optional argument is quoted, then the user will be prompted (on
the next line) to enter an un-echoed password.

The standard arguments for utilities are also available, see 4.9.l-2.

Utilities

OPS Issue 1

	

8 1

Chapter 6

Functions

This command sets the working directory on the network filing system
(nfs:) to be the specified log-on directory (nfs:&). It does not otherwise

change the current working directory.

Examples

-> logon lionel

-> logon -as fred secret

-> logon 4.126 panosthings -pass

82

	

OPS Issue 1

6.10 Rename Command

This utility allows the user to rename a list of files or directories.

Concepts

See 2.5.

General Form

-> Rename arguments

Arguments

[-FROM] file names
This keyword (itself optional) refers to the list of files to be renamed.

[-AS] file names
The list of new file names is (optionally) preceded by the keyword -AS.

[-BEFORE] date
Rename the file only if its datestamp is before the date and time
specified (or if it does not have a valid datestamp). See 4.6.2 for the
date format.

[-AFTER] date
Rename the file only if its datestamp is after the date and time
specified (or if it does not have a valid datestamp). See 4.6.2 for the
date format.

The standard arguments for utilities are also available, see 4.9.l-2.

Examples

-> rename oldName newName

-> rename -from this -as that -force

Utilities

OPS Issue 1

	

83

Chapter 6

-> rename old new -verbose

-> rename S.adir.* -as S.bdir.* -force

-> rename adfs:*- -as adfs:*-rif -confirm

Functions

The rename command lets the user rename a list of files or directories. Both
the original and new files must be on the same medium, i.e. same physical
surface of the disc. If it is required to `rename' across filing systems or discs,
use the Copy command with the -delete option which is effectively the same
thing.

If wildcards are used, the matched wildcards in the source list are
substituted for the corresponding wildcards in the destination (if both
source and destination strings are wildcarded).

8 4

	

OPS Issue 1

6.11 Set Command

This utility allows the user to set the value of various Panos attributes, viz
date and time, tabs, global variables, vdu characteristics, function key
bindings, and current working directory.

In effect it is a family of commands: Set Date, Set Tabs etc.

Concepts

See:

2.2 attributes
2.5.5

	

current working directory
2.7

	

global variables
4.4

	

function key bindings, tabs
4.6.3

	

time and date

General Form

-> Set Attribute arguments

Attributes and Arguments

DATE/TIME date
This sets the date or date and time to the date specified by the -DATE
or -TIME keyword. If no time is specified, then 00:00:00.00 is
assumed; if no date is specified, then the current date (if set) is
assumed. See 4.6.2 for the date format.

The day of the week can also be submitted. The word `Today' is also
allowed and is assumed to have a time of just after midnight yesterday.
This is useful for backing up files which have been altered during the
day.

TABS [-AT positions] [-THEN increment]
Sets the tab stops for the tab key. The tab stops can be set to
incremental or absolute positions.

Utilities

OPS Issue 1

	

8 5

Chanter 6

Incremental positions are numbers prefixed with a plus sign, and are
relative to the previous tab stop. Absolute positions are simply column
numbers.

The -THEN keyword describes column intervals. For instance, -AT
4,12, + 2 -THEN 8 would set tab stops at positions 4, 12, 14, 22, 30, 38
and so on.

VAR [-NAME] name [-VALue] value
This sets the value of a global variable. This set built-in command is
similar.

VDU attribute value
This sets the value of a VDU attribute:

-MODE

	

screen mode,
-COLour

	

text colour,
-FOREground

	

as colour,
-BACKground

	

background colour,
-PAGEd

	

page mode (enabled-TRUE
or disabled-FALSE).

For representations of the values for each of these, see 4.6.3.

KEY key-number string
This assigns a string to the specified soft key. Typing I j at the end of
the string will cause a carriage-return to be appended to the string
when the specified key is pressed.

DIR directory
This sets the current working directory to the directory specified. The
directory name may include wildcards.

The standard arguments for utilities are also available, see 4.9.l-2.

Examples

-> set date 15th feb 85

-> set date monday 1st august 1983 4:14 pm

-> set date 05-mar-85 12:56:00.67

-> set time 2:02 pm 1985/february/15

-> set tabs -at 0, 4, 10, +6, +6, +6 -then 8

8 6

	

OPS Issue I

Utilities

-> set var -name cli$path -value dfs::0, dfs::2, a

-> set var cli$prompt "& "

-> set vdu -mode 3

-> set vdu -colour cyan

-> set vdu -background flashing-red

-> set vdu -paged true

-> set key 3 "edit myprogramlj"

-> set dir $

OPS Issue 1

	

87

Chapter f

6.12 Show Command

This command acts in a way complementary to set, i.e. it shows the values
of various Panos attributes, rather than setting them.

Concepts

See:

2.2 attributes
2.5.5

	

current working directory
2.7

	

global variables
4.4

	

function key bindings, tabs
4.6.3

	

time and date

General Form

-> Show attribute arguments

Arguments

[-TO] name
See 4.9.l.

[-SET]
Formats output ready for re-setting. A use for this is the creation of a
command file which will set the shown attributes to their current
values.

Attributes and Arguments

DATE/TIME
This shows the time and date in textual format.

TABS
This shows the current tab settings.

8 8

	

OPS Issue 1

VAR [variable-name]

This shows the value of one or more global variables. If no
variable-name is given then all global variables are printed. Wildcards
may be used.

VDU [attribute]
This shows the value of a VDU attribute: see under Set command for a
list. If no attribute is given, all are listed.

KEY [-Numbers] [number]
This shows a soft key's string. The key number is optionally specified
by a -Numbers keyword, i.e. show key -numbers 3,4,6. If no keys are
specified, then all are shown.

DIR
This shows the full pathname of the current working directory.

The standard arguments for utilities are also available, see 4.9.l-2.

Exarnples

-> show date

-> show time

-> show tabs -set

-> show var

-> show var program$*

-> show var file$* -to setfiles-cmd -set

-> show var file$-mod,alias$*

-> show vdu mode

-> show key 3,4,5,9,2

-> show key -numbers 7,2

-> show dir

i Jtilities

OPS Issue 1

	

8 9

Chapter 6

6.13 Star Command

This utility allows the user to issue BBC style * commands.

It is a `dangerous' command which enables the user to send commands to
the BBC Microcomputer's command line interpeter. Such commands are
usually preceded by a'*' in environments such as BASIC, hence the
command's name.

Concepts

See the Panos Programmer's Reference Manual.

General Form

-> Star arguments

Arguments

[Command]
This is the text of the command to be issued.

Examples

-> star fx 5,4

-> star screenDump

-> star free

-> star map

-> star compact

90

	

OPS Issue I

Functions

Since Panos does a lot of work `behind the scenes' to keep up its
environment, the result of issuing * commands is not always predictable,
and they should only be used when no other means exists. The integrity of
Panos cannot be safeguarded.

The current directory is selected for the operation of a star command.

Utilities

OPS Issue 1

	

9 1

7 Editor

7.1 Introduction

7.1.1 Context

The editor is used in the creation and modification of source programs for
the language compilers and the assembler. It may also be used for general
applications, for example, preparing manuals which are formatted by a
formatter program such as GOAL, or for preparing data or command files.
In fact it can edit any file, text or binary.

It is screen- rather than line-orientated. That is, text is displayed a `page' at
a time on the screen and may be altered by moving the cursor around using
the cursor keys, and by typing.

The concept of windows is fundamental to the editor; several files can be
edited simultaneously, and material can easily be transferred between files
which are viewed through their own separate windows.

Access to the Command Line Interpreter is also available from the editor,
so compilers, utilities and built-in commands can be used from within an
editor window. For example, this is useful for inspecting and switching
directories. One particularly useful feature is the ability to compile
programs from within the editor whilst editing, the program source, and
sending the error messages to another editing window; thus the
compile-edit-recompile cycle is much smoother, easier, and less
time-consuming.

Because the editor is principally designed for the preparation of source
texts, it has powerful search and replace facilities which includes
sophisticated pattern-matching.

OPS Issue 1

	

9 3

Chapter 7

window. This window prompts the user for a particular response, and
disappears after the response has been made.

A few commands are carried out using control keys. Except during
prompts, the normal printing (i.e. non-function, non-control) keys are used
for inserting text into the text window. The editor is relatively 'mode-free'.
In particular, there is no overtype mode.

A summary of the function of each key may be found in the key cards
supplied with the system.

7.1.2 Basic Facilities

In common with similar programs, the Panos editor is best understood and
learnt through use and experience. Before the remainder of this chapter, a
simple demonstration and exercise are given which will serve to introduce
the basic editor facilities.

Try entering the small Pascal program listed below. If preferred an
equivalent C or FORTRAN 77 program, or plain text could be substituted.
Program sources in various languages can be found on the Welcome disc.
The confidence test (`Hello World') found on each language disc could be
used as a basis for exploring the editor.

PROGRAM World (Output);

(Acorn 32000 ISO Pascal - basic confidence test)

BEGIN

WriteLn ('Hello Pascal world')

END.

First load the editor. To edit a new file type:

-> edit

94

	

OPS Issue I

Editor

OPS Issue 1

	

95

Chapter 7

9 6

	

OPS Issue I

Organisation of this chapter

By way of introduction, many of the basic facilities have been described
through example. The concepts behind the use of the editor are documented
next. This is followed by the organisation and start-up.

The editor has its own command language based on the use of function
keys, so this is documented along with many of the simple facilities in a
section on its own. Associated with this language is a display plus feedback,
so these too are documented separately. Finally more complex user actions
are defined in terms of the facilities provided.

7.2 Concepts

The editor is based on the concept of windows. An edit window is
conceptually a limited sized port onto a text document. The window may be
moved around to gain different views of the document. Each window has a

corresponding buffer (area of memory), of a given and fixed size.
Associated with the port is an area of the screen which displays the current

text.

In addition to edit windows, other forms of window are used for dialogue,

help etc. a s follows:

http://etc.as
http://etc.as

Editor

prompt window (a dialogue box)
command window
error window (an alarm box)
help window

When multiple windows co-exist, they are usually mapped onto the screen
in such a way that some are on the top of (and thus wholly or partially
obscuring) others. However, there is always a window which is `active' at
any one time, i.e. the window which contains the cursor, and upon which all
functions take effect. This applies to all windows including non-editing
windows such as prompt windows. In fact such windows normally only
exist when they are active.

The cursor has two separate functions. The first indicates the current insert
point for typing new text which is conceptually immediately before the
cursor. Secondly it selects individual characters, lines, or blocks of text.
The cursor is guaranteed to be visible if the active window is on top.

7.3 Editor Organisation

7.3.1 Installation

The editor should have been installed along with the Panos system, as
described in the User Guide supplied with the system. Difficulties in getting
the editor to work properly are dealt with in 7.8. If using the editor in
conjunction with the DFS, a system disc should have been created, which is
placed in the top drive.

A number of global variables affect installation - see 7.3.3.

7.3.2 Loading the Editor

To load the editor, enter Panos as usual. If using Panos in conjunction with
the DFS, insert the system disc in the top drive (e.g. the language system
disc).

A number of options can be issued which mainly affect start-up behaviour.
Various global variables can also be set by the user which can further
determine the editor's behaviour; these are described in 7.3.3.

OPS Issue 1

	

9 7

Chapter 7

General Form

The editor may be called by typing:

-> edit

-> edit filename options

-> edit arguments

The last form is just the general case where arguments may include a file
name or may be empty. The second form loads a file to be edited, the first
does not.

Arguments

-Help
See 4.9.l. It prints out a list of the options. Note that it is not the same
as, nor does it give access to, the help information associated with
editor functions, which is obtained by pressing SHIFT - ESCAPE

	

from
within the editor, and is fully described in 7.6.l. This is what the
`-help' option will produce (for version l.10):

-> edit -help

Edit 1.10

Keywords:

-File <file>

	

File name to start editing

-Line <number>

	

Line number to jump to

-Buffer <size>

	

specify buffer size (50000 default)

-Obey <file>

	

Obey KeyLog file

-New

	

Create a new file

-Browse

	

Prevents altering or saving file

Global variables:

EDIT$HostCode

	

Host-code file name

EDIT$Initfile

	

Optional initialisation file

EDIT$ScreenMode

	

Optional screenmode (0/3)

EDIT$Extension

	

Optional default file extension

EDIT$KeyHistory

	

Optional keystroke history file

EDIT$HelpFile

	

Optional help file

-Identify
See 4.9.l.

98

	

OPS Issue 1

Editor

-File
The keyword -File is not normally required since positional notation is
the norm for the filename.

-Buffer
This option is used to set the size of the buffer. The default size is
50,000 bytes. The maximum buffer size depends upon the memory
(RAM) available. Note that when a file is first loaded into the editor,
the buffer is automatically set to accommodate the size of that file.

-Line
This option specifies a line number. In the example below, when the
file is loaded, the cursor will be at line 45. See also section 7.7.2
(searching) and section 7.7.4 (jumping to a line).

-Obey
This obeys a file which contains a record of all key strokes (including
function keys) which have been made during a previous session with
the editor. Creating and using keylog files is dealt with in 7.7.3.

-New
If this keyword is specified without a file name, then the effects are the
same as typing `Edit' on its own, i.e. a new editing window is created
with no name. However, if a file name is specified then when the file is
saved, it will be given the specified name as a default.

-Browse
Sometimes it is useful merely to view a file with no intention of
changing it at all. As a safeguard against accidents, the keyword
`-Browse' permits editing without altering or saving the file.

E.raniples

-> Edit -File buffer

-> Edit bigfile3 -buffer 600000

-> Edit dfs::2.Mop-cmd -line 45

-> Edit Frog -New

-> Edit Precious-txt -browse

OPS Issue 1

	

99

Chapter 7

7.3.3 Global Variables

The behaviour of the editor is governed to some extent by the values of
certain global variables, the meanings of which are described in this section.
As is usual with such variables they may be set by the user (see 2.7).

In the version of !Panos supplied with the system, there are two global
variables pertaining to the editor, although only `Edit$HostCode' must be
set for the editor to function.

Edit$Hos tCode

This global variable must be set to the full pathname of the editor host code.
In the versions of !Panos for the ADFS or NFS and for the DFS these are
different, with values as follows:

AD/NFS "$.Panoslib.Edit6502-bbc",
DFS ":0.ed6502-bbc".

The only reason why this should ever be changed, is if the pathname of the
host code changes (for instance, if the name of Panoslib is altered).

Edit$ScreenMode

By default, the editor is in screen mode 0. This can be switched to 3 if
desired. In mode 3, the windows have dotted line boundaries, less lines per
window, and the cursor is larger and easier to detect. To change mode from
0 to 3:

-> set var edit$screenmode 3

Edit$Extension

This variable sets the default file extension for files to be edited, so, for
example, if FORTRAN 77 source files were the only type of file ever edited,
then it would be convenient to set this variable to `-f77'. For example:

100

	

OPS Issue 1

Editor

-> set var Edit$Extension f77

This means that -f77 extensions need never be specified. However, in order
to edit a file which has no extension, it would be necessary to add "-" to the
end of the file name.

Edit$HelpFile

The editor has help facilities which reside in a file whose name is the value
of this global variable. Values supplied with the default !Panos are:

AD/NFS "$.PanosLib.EditHelp-dat"
DFS ":O.edHelp-dat"

This global variable need only be altered if the help file has been moved, for
instance, if `Panoslib' has been renamed.

Edit$Cotntnand

This variable determines the window and buffer size of the command
window. The general form for its value is:

"-height h -width w -buffer b"

where h is the height of the command window in lines, w is the width in
characters, and b is the buffer size in bytes. For example:

OPS Issue 1

	

101

Chapter 7

"-height 12 -width 77 -buffer 2000"

is the default.

Edit$KeyHistory

See 7.7.3.

7.4 Display

7.4.1 Screen Layout

The screen is divided into editing windows and a top status line. The status
line is used partly for instructions, (see 7.6.2), and partly to display a clock
(see 7.4.5).

Pop-Up windows are superimposed temporarily onto the screen at a system
defined place for dialogue, warnings etc., see 7.5.7 and 7.6.

Editing windows display a portion of the text in the buffer associated with
that window. As editing takes place the display is updated. However the
re-display onto the screen takes place in a way that may be unfamiliar, and
a little strange at first. The screen is only re-displayed every `clock tick' and
when the editor is not busy carrying out an action.

The effect is the user does not have to wait for the editor to redraw the text
before continuing with the next action. Indeed if a complex sequence of
actions are carried out only the final display and perhaps some intermediate
ones may be seen. This has little effect on the beginning user, but speeds up
operation for the advanced user.

7.4.2 The Cursor

The cursor is displayed in the `active' window as a flashing underscore, the
exact form depends on the screen mode. Each window has a separate
cursor, those not in the active window have a different, but non-flashing
representation. Note that this applies to all windows, including for example
prompt windows, i.e. when a prompt window is active the cursor is
employed for the user response.

102

	

OPS Issue 1

Editor

A flashing cursor indicates a modified buffer. If the buffer is newly loaded
or saved, then the cursor does not flash.

The cursor is visible if the active window is on top, or if not obscured by a
window that is above it.

7.4.3 Position Indicator

As the cursor changes its position, a thin vertical line in the top border of
the screen moves to the right. This indicates where the cursor is in relation
to the whole of the text. When this line is in the extreme left position, the
cursor is at the top of the text; when it is in the extreme right, the cursor is
at the end of the text. This facility operates for all editor windows.

7.4.4 Line Overspill

Lines of text are sometimes longer than the width of an editing window; this
may be particularly prevalent in documents not originally created using the
Panos editor and in non-text files. Line overspill is indicated by two dots
cutting into the right border of the window.

For example, move the cursor to the start of a line and hold down a key_ It
will start to auto-repeat after a while, and the line will fill up with that
character. When the cursor has just passed the end of the line, release the
key. Press the cursor left key until the cursor re-appears on the line. A white
triangle appears to the right of the border. This shows that the cursor is
located beyond the edge of the window. The two small dots which remain
mean that there is more text on this line and act as an indication that what
is on the screen is not a representation of the whole text.

There are several ways in which the text that is missing on the right of the
screen may be revealed.

OPS Issue 1

	

103

Chapter 7

7.4.5 The Clock

When the editor is idle (i.e. not performing an operation), a clock at the
upper right hand side is constantly `ticking'. The clock uses the system
variable sys$date, which is initialised when the date is set.

7.4.6 Display of Special Characters

The editor is able to accept and display all ASCII characters. Printing
characters are displayed in edit windows in the obvious fashion.

Non-printing characters are displayed as their hexadecimal value in a small,
underlined type style. Each occupies two normal character positions on the
screen but is edited as if it were a single character.

For details of input of non-printing characters, see 7.5.

In addition, a special representation may be used for tabs.

7.5 Command Language and Basic Functions

Introduction

The editor is loaded in the normal fashion by the command line interpreter,
see 7.3.2. Once loaded, actions are carried out entirely through the use of
special keys, i.e. the editor has its own command language tailored for its
particular function.

This section introduces the command language in terms of groups of special
keys. These groups are:

104

	

OPS Issue 1

Editor

- printing keys
- cursor movement keys
- deletion keys
- control keys
- function keys
- other keys

Some keys have different meanings outside of edit windows, i.e. in prompt
windows, help windows etc. These are dealt with separately.

Tables summarising the effect of the special keys may be found in the key
cards supplied with the system.

OPS Issue 1

	

105

Chapter 7

Table 7-1 Cursor Keys

1

	

moves the cursor up one line
1

	

moves the cursor down one line
moves the cursor left one character
moves the cursor right one character

SHIFT-t

	

moves the cursor up one page (window)
SHIFT-4

	

moves the cursor down one page (window)
CTRL--

	

moves the cursor to the start of the line
CTRL--

	

moves the cursor to the end of the line
CTRL- t

	

moves the cursor to the start of the text
CTRL-4

	

moves the cursor to the end of the text
CTRL-SHIFT r

	

displaces the window to the right over the buffer
CTRL-SHIFT -

	

displaces the window to the left
CTRL-SHIFT t

	

displaces the window upwards
CTRL-SHIFT 1

	

displaces the window downwards

It is not possible to move the cursor before the beginning of the text, or after
the end-of-text marker.

See also section 7.7.4, which shows how to make more specific movements
within the text.

7.5.3 Deletion Keys

106

	

OPS Issue 1

Editor

Table 7-2 Deletion Keys

DELETE

	

deletes the character to the left of the cursor
COPY

	

deletes the character to the right of the cursor
CTRL-DELETE

	

deletes the line to the left of the cursor
CTRL-COPY

	

deletes the line to the right of the cursor
CTRL-U

	

deletes the whole line of text where the cursor is
located

7.5.4 Control Keys

OPS Issue 1

	

107

Chapter 7

7.5.7 Prompt Windows (Dialogue)

A number of commands (function keys) require further input from the user,
e.g. a file name or a search pattern. A prompt window (or dialogue box)
appears, and the user is invited to type a response.

Almost anything that is normally carried out by Panos (except running the
editor) can be done from this command window. Not only can the utilities
be run, but also the compilers, linker, and user programs.

This is very useful for debugging. A typical cycle for program development
may be as follows:

l.

	

Edit program source
2.

	

Save program source
3.

	

Compile program source from within an editor command window
4.

	

Scroll up and down from within this window, making notes of the
errors

5.

	

Return to editing the original program source

Note that throughout the session, the program source remains visible in the
main editing window. The actual commands used (for a Pascal program
called `test') would be:

108

	

OPS Issue 1

Editor

Using the compiler `-error' option, and then copying the error file to an
editor command window gives a glimpse of the errors resulting from the
compilation. Because the window is smaller than the potential size of the
error list, only a few lines can be present in it at any one time. However it is
possible to scroll up and down within this window, carry out searches and
other functions just as in the main editing window.

An alternative method is to load in the error file to a separate edit window.
Window creation and manipulation is explained in 7.7.5.

The size of the command window is governed by the Edit$Command global
variable, (see 7.3.3).

Note that the use of command windows is subject to memory constraints.

7.6 Feedback and Errors

The editor provides feedback to the user in a number of ways. Normally
this is documented under the particular event, but a number of common or
special items remain to be described in this section. These consist of help
information, and error messages.

The cursor may be used to select a character, or line, and in conjunction
with function keys, a block. Feedback is given to indicate the selected
character or block, see 7.5.2 and 7.7.l.

The position of the cursor as a proportion of the text is also displayed, see
7.4.3.

The text buffer itself is displayed through an edit window, see 7.4.l.

Chapter 7

7.6.1 Help Information (and Windows)

There are three sources of help for the editor: this document, which offers
the most comprehensive information, the `keyboard cards' which serve as an
at-a-glance reminder, and on-line help. This section describes the on-line
help facility, which is entered from within the editor and is viewed in a help
window. This is not the same as the help information about start-up
options, which is accessed outside the editor as described in 7.3.2.

Help Windows

2. Notice the `highlight cursor'. This draws attention to the present location
within the on-line help text. At first, this is placed over `General'.

3. Press the left-arrow cursor key once. This will now change pages to the
` Keys' page.

5. Press the down-arrow cursor key a few times, and the function key
headings will be highlighted.

6. Now press the right-arrow cursor key three times, and control key
functions will be displayed.

11 0

	

OPS Issue 1

Editor

7.6.2 Error Messages (and Windows)

There are two types of errors: some cause the appearance of error windows,
and others generate a warning message which appears at the top left hand
corner of the screen above the normal editing window.

Warning messages draw the user's attention to the fact that something has
happened which may not have been intended, but which has not caused the
editor, Panos, or a filing system to behave abnormally. An example of a
warning message is

Warning: Search not found

Error Windows

Error windows (or action boxes) appear following a more serious user
,error'. In contrast to warning messages, errors which produce an error
window cannot be ignored, and until some action is taken, editing cannot be
resumed. This following is an example of an error message.which occurs
when an attempt has been made to load a non-existent file called faulty:

Error: From module File

File 'Faulty' does not exist

OPS Issue 1

	

11 1

Chapter 7

11 2

	

OPS Issue I

7.7 Advanced Editor Functions

Specific editor functions are described in this section expressed in terms of
actions required by the user.

7.7.1 Block Editing

Editor

f2

	

Delete marker
fl

	

Copy the block delimited by marker 1 (Block Start) and
marker 2 (Block End) to the cursor

SHIFT-fl

	

Move the block of text delimited by marker 1 (Block Start)
and marker 2 (Block End) to the cursor

SHIFT-f2

	

Deletes the block of text between the cursor and the single
marker.

Block Deleting

The sequence of actions for deleting a block is:

l.

	

Set a marker at the top of the piece of text to be deleted. Only one
marker may be set during a block delete.

2.

	

Move the cursor to just after the last character to be deleted.

OPS Issue 1

	

11 3

Chapter 7

3.

	

Move the cursor to the point in the text where the text is to be
transferred

7.7.2 Searching and Replacing

Search C

or

Replace C ...

	

I by I

Scope

Normally the scope of a search or replace is from the cursor to the end of
file. The scope within which a search or replacement is carried out can be
restricted to a block by planting one or two markers which then form
boundaries beyond which all operations are inhibited providing the cursor is
within the block when the command is given.

114

	

OP$ Issue 1

Editor

Search Patterns

Simple patterns consist of plain text which the editor looks for exactly as it
has been typed (with the exception that upper and lower case letters are
treated as equal). For example, the following sequence of events will look
for the string `procedure':

l. Move the cursor to the start of text area to be searched (normally the
start of the file).

If any occurrence of the pattern is found, the cursor will be placed at the
start of it, otherwise the cursor position is unaltered, and a warning message
will be displayed at the top left-hand corner of the screen just above the
main editor window:

Warning: Search not found

In addition to simple strings like `procedure', patterns may contain special
characters which will match more general characters or groups of
characters. A list of these special characters is given in Table 7-3.

OPS Issue 1

	

115

Chapter 7

other number, would be 1 p. The `#' symbol would be displayed in inverse
video as shown. Literal uses of these characters are not displayed in inverse
video.

Special characters can be used in many combinations and there are few
restrictions on the number of one particular pattern that can form a search
pattern. So, for example, the search pattern the " will match any number of
Vs, h's, and e's in succession.

Table 7-3 Special Search Characters

116

	

OPS Issue 1

Editor

Replacement Patterns

` # # # #' stands for any four digits, and `&' stands for a repetition of the
whole search pattern.

When a match for the pattern is found, the editor will prompt with:

R(eplace), S(kip), 0(nce), A(ll), E(scape) or H(elp) ?

Table 7-4 Replacement Options

O

	

means make the replacement once and then stop,
E

	

returns to the main editing window, doing nothing,
R

	

makes the replacement and looks for the next match,
S

	

looks for the next match without making the replacement,
A

	

replaces all matches without prompting,
H

	

gives help on the command.

In dw case of O, R, S, and A, the cursor is left at the position of the last
replacement; E and H do not alter the cursor's position.

OPS Issue 1

	

117

Table 7-5 Special Replacement Characters

Chapter 7

In other words, % accesses one particular wildcarded section in the
search pattern.

To save counting, %n can be used to stand for the nth match, %*n
to stand for the nth * match and so on.

% + or -n is similar to the above replacement pattern but forces the
matched pattern to be replaced in upper (+) or lower (-) case.
Thus % + *0 will replace whatever `*'represents in upper case, and
% + & will change to upper case all the characters in the search
string.

\n allows literal digits to be inserted after a %n. Thus, %#3\11
will NOT replace the 311 th occurrence of the # match, but will
replace the third occurrence, followed by the number eleven.

Examples of Replacements

Replace [Keith] by [Ben]
will replace all occurrences of "Keith" with "Ben"

118

	

OPS Issue 1

Editor

7.7.3 Learnt Sequences

The editor has the ability to 'remember' a sequence of commands and
execute them all later. The sequence of commands which carry out a
number of other commands is sometimes referred to as a macro. To
compose an editing macro, follow these steps:

Oht--ed Sequences

It may be convenient to keep a record of actions within the editor, and
possibly 'replay' them at a later stage. This is useful if the same pattern of
editing is to be repeated on a selection of files. This can be done by setting
the global variable 'Edit$KeyHistory' to any file name, carrying out the
editing sequence, exiting the editor, and then using the '-Obey' keyword to
obey the key history file. This is analogous to using Panos command files to

OPS Issue 1

	

11 9

Chapter 7

carry out a series of operations. The sequence is set out in the example
below:

Step 1:

-> set var Edit$KeyHistory LogFile

Step 2:

-> Edit filet

Step 3: Carry out sequence of editing commands etc. and then exit.

Step 4:

-> rename logfile OLdLog

Step 5:

-> Edit file2 -Obey LogFile

Whatever actions were performed during step 2 will be repeated upon the
same file in step 4. Compare this with using the learning function; the main
difference is that the `logfile' is a permanent file, whereas the learnt
sequence is lost upon exiting the editor, or erased when a new learning
sequence is initiated.

7.7.4 Moving the Cursor

There are five ways of moving the cursor, and hence selecting a position, or
defining the insert point. These are shown in the following list. The first
three are described in full elsewhere, but repeated here for completeness.

l.

	

By means of the cursor movement keys, (see 7.5.2).

2.

	

Searching for a particular character, or group of characters, (see 7.7.2).

3.

	

Entering the editor at a particular line through use of the `-line' startup
option, (see 7.3.2).

12 0

	

OPS Issue 1

Editor

7.7.5 Windows and Buffers

Windows have been introduced in previous sections. In particular, prompt
windows, help windows, command windows and error windows have been
described in full, but edit windows have only been introduced. Some of the
concepts behind windows are put forward in 7.2.

It is possible to create more than one edit window containing separate texts
entirely; this enables more than one file to be edited at the same time.
Furthermore, one text may be split into a number of different windows,
which can then be edited and saved as separate files.

The window may be moved around to gain different views of the document,
using a

	

k

	

- SHIFT

	

+ arrow combination.

Each window has a corresponding buffer (area of memory), of a given and
fixed size. This is determined by the size of the file which was loaded. If a
new file is to be edited, then the default size is 50,000 bytes, but this may be
changed using the `-buffer' start-up option.

The number of windows that can be opened simultaneously depends upon
the amount of memory available in the computer, and the size of the
buffers. For instance, if the buffer size is set to 700,000, then a machine with
one megabyte of memory will not support buffer duplication (i.e. a second
window will not be supported, and an error message will be given).

When multiple windows co-exist, they are usually mapped onto the screen
in such a way that some are on the top of (and thus wholly or partially
obscuring) others. This has already been seen in the context of non edit
windows, e.g. prompt windows. However, there is always a window which
is 'active' at any one time, i.e. the window which contains the cursor, and
upon which all functions take effect.

Window manipulation is carried out using a selection of keys described in
Table 7-6.

All of the normal editing commands can be carried out in any window; the
editing commands can also be used to transfer data between windows. For
example to move or copy a block, first select the block by setting markers,
then select or switch to another window and execute the move or copy
command.

Note that markers can only be deleted in the active window.

OPS Issue 1

	

12 1

Chapter 7

Table 7-6 Window Manipulation Commands

CTRL-SHIFT-D

	

Duplicate a window
This creates a whole new window (and corresponding buffer) identical
in size to the original window, thereby completely obscuring it, and
places the cursor in this new empty window ready for editing.

CTRL-SHIFT-K

	

Kill a window
This command deletes a window and its buffer. Be careful when using
this command to delete the correct window: the active window which
contains the cursor is deleted, and the cursor may not always be visible
on the screen.

CTRL-SHIFT-F

	

Extend a window
This command extends a window to its full size, e.g. after splitting.

CTRL-SHIFT- A Select a window
This command moves between windows, placing the next window on
top of the current window. The new window is made the active one.

12 2

	

OPS Issue 1

Editor

Exercise

As a demonstration of the usefulness of multiple editing windows, try this
exercise:

l. Edit a program source file which contains errors

3. Compile this faulty program source (from within the Panos command
line window), sending the output to a named file

4. Return to the main editing window

6. Load the error file into this second window

7.8 Problems

This section deals with difficulties encountered in loading and using the
editor. It also covers avoiding and repairing some basic mistakes. The editor
has powerful recovery mechanisms which reduce the possibility of losing
edited text. Error messages and guidance in recovery are provided on-line.
However, for completeness these are also documented below.

Messages in Error Windows

See 7.6.2.

PrescinY the Wrong Key

OPS Issue 1

	

12 3

Chapter 7

example, if an incorrect search pattern has been given and the editor is
laboriously churning through the file, pressing ESCAPE will halt the
process.

The ESCAPE key will also terminate a command that has displayed a
prompt window, and return to the edit window.

Un-deletink

If text has been deleted by mistake, then press

	

SHI F7 -TAB

	

and the
deleted text will reappear. This also works for blocks of deleted text.

The Editor Window does not Appear.

This refers to the situation when the edit command has been given, but the
screen remains blank, even after a suitable pause.

If floppy discs are being used, check that the disc containing the editor is
placed in the top drive.

There is a chance that the Panos variables for locating the various parts of
the editor may not have been set up correctly. If this is the case, then either
the installation procedure has not worked correctly, or a customised (or
corrupt) version of !Panos is being used.

First try using an original version of !Panos to start-up Patios. There are
two variables which must contain the locations of various parts of the
editor: `Edit$HostCode', and `Edit$HelpFile'. These are initialised by the
!Panos start-up file provided with the system, and are therefore
automatically initialised when Panos is entered.

However, if Patios has been started up using a corrupt !Panos file (for
example, because it has been deliberately modified), and the editor variables
are not present and correct, an error message results from attempting to use
the editor, and the window may not appear. Check with an original version
of !Panos to see what these variables ought to be initialised to, and check
also that the help file and host code do exist as they are supposed to, see
7.3.l.

If it transpires that the editor has not been installed correctly (i.e. the host
code or help file is not in the right place), then it is likely that other parts of
Panos are also incorrectly installed; therefore, Panos should be re-installed
according to the instructions provided in the User Guide.

124

	

OPS Issue 1

Editor

Saving Files

Error : From Module BBC

Dir full : 'file name'

When saving files on floppy disc, there may be a shortage of space.
Compacting the disc may relieve this problem.

Pie Buffer

The editor buffer is 50,000 bytes by default when editing a new file. The
name, size, and percentage used of the buffer, number of lines, and line
number of the cursor position can be found out by looking in the on-line
help information under the title `Buffers'.

The buffer size can be set by the `-buffer' option which can be issued on
loading the editor. See 7.7.5 for a description of buffers. If the buffer size
has been set to be very large e.g. 700,000 bytes (using the '-buffer'start-up
option), then error messages will result if an attempt may be made to
duplicate the buffer, as there is no memory space left.

Energenev Exit

In the event of a disaster (software fails to perform, for instance), and it is
necessary to leave the editor and return to Panos, an emergency exit can be
engineered which preserves the contents of the buffer. The editing done
since the last 'Save' is therefore not lost. This may be carried out at any time
and from within any type of editing window.

Sorry, But the Editor has stopped abnormally

Do you wish the buffers to be saved?

This awaits a 'y' or 'n' response. To return to Panos, type 'n'; to preserve,
type 'y'. The editor then prompts for another affirmation:

OPS Issue 1

	

12 5

Chapter 7

Dump "<file name>" as 'BeforeA' and 'AfterA'

Reply `y'. If more than one buffer was open, then more prompts would
appear for ' Be f o r eB' and ' A f t e rB' and so on. The initial stands for the
cursor position in the document; therefore, the contents of the buffer are
saved as two files, one which contains all the text which existed before the
cursor, and one which contains text after the cursor up to the end of the file.

When the Panos -> prompt reappears, simply copy the files `BeforeA' and
` AfterA' to a file name (remembering to use the `-force' option if the
original file name is chosen), and an intact copy of the document which was
being edited when the `crash' occurred is recreated.

12 6

	

OPS Issue 1

8 Linker

8.1 Introduction

8.1.1 Context

This chapter describes the Acorn 32000 Linker. The linker is a utility
program which runs under the Panos operating system, and is used to
combine compiled object files with object libraries to produce an executable
program image file, for execution under Panos.

8.1.2 Basic Functions

The command line necessary to invoke the linker begins with the word
link and is followed by various arguments. In a typical example, the linker

must be informed of the names of the AOF files (see later) to be linked and
the names of the libraries to be used. By default, the name of the image
(RIF) file to be produced is derived from the name of the first object file
specified. This behaviour may be over-ridden by explicitly providing a name
for the image file, following the keyword -image (described in more detail
later).

Suppose a program is written in FORTRAN 77 and has two components,
held in source form in the files front-f77 and back-f77. These have been
separately compiled to produce the files front-aof and back-aof, and are to
be linked with the FORTRAN 77 library. It is desired to call the resulting
image file Test-rif. The command necessary to perform this operation is:

-> link front,back f77 -image Test

The linker will look for files front-aof and back-aof, and will link them with
the library identified by `f77', producing (if there were no errors) an image
file called Test-rif. (The linker's exact treatment of the argument T77' is
explained in the section on libraries below.) Note that the linker supplies the
appropriate extensions (-aof, -lib, -rif) if the user does not state them
explicitly.

OPS Issue 1

	

127

Chapter 8

In common with all commands, lists containing more than one element
have the elements separated by commas, and parts of the command are
separated by spaces.

If no image file name is mentioned, the first name in the aof file list is used,
with its own extension (normally -aof) removed, and -rif appended instead;
i.e. in the example, it would be called front-rif, if the -image option had not
been given.

A number of further options are available; these are described later.

8.1.3 Conventions in this Chapter

In terms of syntax, the basic command line of the previous section could be
written as:

LINK aof file list (f-LIBRARY) library list) (-IMAGE file name)

In this chapter, parts of the command which are optional are shown in
braces, (and l. Parts given in upper-case are literal text, i.e. they
correspond to items which should be supplied as shown; parts in lower case
correspond to general classes of items of which the user must supply a
specific value. For instance, the keyword -IMAGE should be supplied (if
required) exactly as it appears in the specification (although the case of
letters in the actual command is not significant), whereas for the item `file
name', the user should supply an actual file name in this position.

8.1.4 Organisation of this Chapter

The basic functions have already been introduced. For many users, these
will be sufficient. Advanced functions are described later. Before that are
the concepts behind linking, and details of the linker organisation and
start-up. The linker uses the standard command language, and is installed
as part of Panos, so no special treatment is required for these topics.

128

	

OPS Issue 1

Linker

8.2 Concepts

8.2.1 Linking Model

The normal sequence of program development using a compiled language is:

Stage Action

	

Utility

	

Generates (e.g.)

1

	

Prepare the source

	

editor

	

prog-pas
2

	

Compile the program

	

compiler prog-aof
3

	

Link with libraries

	

linker

	

prog-rif
4

	

Run the program image

The third stage, linking, is required in order that references to objects
defined outside the main program unit may be resolved, i.e. all the
procedures, functions and data structures provided by the run-time system,
user libraries and Panos which are made use of, either directly or indirectly,
by the program. These will normally include language-specific procedures
for such things as input/output, storage allocation etc.

In addition, some languages (e.g. C, FORTRAN 77) permit the separate
compilation of sections of a user's program, and the individual modules so
generated also need to be combined in the same process to form a complete
program. Each object referenced from the main program will reside in a
module which may itself refer to other objects, and so on, so the linker has
to perform a complete analysis of all these cross-references in order to
determine which modules are required in the final image.

Different languages have various ways of declaring items as being external.
For example, extended Pascal provides `IMPORT' and `EXPORT'
qualifiers, and the `extern' specifier is used in C. In some cases a reference is
implicit - for example, a W r i t e l n statement in Pascal may reference a
number of routines in the Pascal library to perform output. This illustrates
that even programs which don't explicitly import items have to be linked. In
fact all programs will normally make reference to some external facility
provided by Panos, but even those few which do not still have to be linked
in order to produce a program image in the correct format for running
under Panos.

OPS Issue 1

	

12 9

Chapter 8

8.2.2 Linking under Panos

The compilers and assembler provided with Acorn 32000 products generate
output files in what is known as Acorn Object Format (AOF). This is a
standard form of representation which includes (amongst other things)
information relating to external references and definitions, and descriptions
of the contents of code and data areas.

Files in AOF cannot be executed themselves, since as described above,
external references have to be resolved, and program images loaded and run
by Panos are in a different format designed for this purpose.

The action of the Acorn linker is to take input from AOF files (which
normally have the extension `-aof) and library files (extension `-lib') and
resolve all the references. All of the modules required in the final image are
combined together, and the result is a file in Relocatable Image Format
(RIF) (extension `-rif) which may be executed under Panos.

Of the language systems supplied with 32000 system, four (ISO Pascal, C,
FORTRAN 77 and the Acorn 32000 assembler) require the use of the
linker. In fact the assembler may be used to produced absolute or
relocatable code which does not have to be linked if it is to be run directly
under Pandora rather than Patios; usually though, the assembler is used to
implement small efficient procedures which can be called by time-critical
sections of programs written in, say, Pascal or FORTRAN 77.

8.3 Linker Organisation

8.3.1 Installation

The linker is supplied with Panos. It should have been installed along with
the Patios system during the installation procedures described in the User
Guide supplied with the system.

130

	

OPS Issue 1

Linker

8.3.2 Global Variables

A number of global variables affect the behaviour of the link command.
These are generally set during the execution of the !Panos command file, in
which suitable default values are used. However, the user may wish to
customise the environment, for example to a FORTRAN only system.

The effect of the individual global variables are described elsewhere in this
chapter, but are listed below for reference:

Link$Lib 8.5.2
Link$Lib_List 8.5.2

8.4 Command Language

The simplified version of the link command given in the first section is
sufficient for many purposes. However, there are several other options
which may come in useful.

8.4.1 General Form

The full syntax of the command is:

LINK [(-OBJECT)

	

aof file list(-aof))

	

[8.5.17

[(-LIBRARY)

	

library list(-lib))

	

[8.5.27

(-FORCE

	

aof file list(-aof))

	

[8.5.37

[-IMAGE

	

image file name(-rif))

	

[8.5.51

I -VIA

	

control file(-lnk))

	

[8.5.41

I -ISHORT)MAP

	

(map file name(-map)))

	

[8.5.61

(-ABSOLUTE)

	

[8•5•7]

[-BASE address)

	

[8.5.87

I -NOTRANSLIB)

	

[8.5.2]

(-NOLIBLISTI

	

[8.5.21

[-IDENTIFY)

	

[8.4.27

(-HELP)

	

[8.4.27

(-ERROR

	

error stream)

	

[8.4.27

OPS Issue 1

	

13 1

Chapter 8

Again, braces, t and 1 surround optional items. Text shown in upper-case
denotes literal items to be supplied, and lower-case words denote classes of
object. Default file extensions are given in parentheses.

Arguments

[-IDENTIFY]
Displays version identification information. See 4.9.l.

[-HELP]
Displays a list of options. See 4.9.l.

[-ERROR]
Redirects error output. See 8.6 and 4.9.l.

The remaining arguments are described later in this chapter. In the above
general form, numbers in brackets I I identify the section which explains
the corresponding option.

8.4.2 Examples

Some examples of link commands (explained in full later) are:

-> link MyProg

-> link fProg f77

-> link fGrapb f77,PlotLib

-> link cProg c,pas

-> link MyProg,Mysub1,MySub2 f77,PlotLib,MyLib

-> link -via Sort

-> link gentest pas -image gent

8.5 Advanced Functions

8.5.1 Object Files

At least one file specified as an object file (or forced file, see section 8.5.3) is
always required by the linker. Normally a list of one or more object files is
provided on the command line (or in a control file, see section 8.5.4). The
list may optionally be preceded by the keyword -object. Any file name given

132

	

OPS Issue 1

Linker

which does not include an explicit extension is assumed to have the
extension -aof. The list may be specified using exact pathnames and/or
wild-card specifications. The linker will process the files in the order given:
for wild-card expansions the order is determined by the facility in Panos
responsible for this, but typically it will be alphabetical for files in the same
directory.

Examples of values of the aof file list argument are:

fred

	

single file
fred, jim, nfs:stage2.sheila

	

list
:2.FPSUB??

	

wild-card specification
main,sl,s2,s3?, adfs:$.sim.f*, adfs:$.sim2.fx*

	

compound

Module Loading

A module contained in an object file specified as a simple object file (or in a
library file which the linker requires to search) will only be included in the
final image if it defines either the main entry point or a global object (i.e. a
symbol or common area) required to satisfy a reference from the main
program or another required module. See section 8.5.3 concerning the
ability to force all modules in a file to be loaded, whether or not they are
logically required in the final image.

8.5.2 Library Files

The second list of names, which is optional and may if desired be preceded
by the keyword -library, identifies the libraries to be searched in the linking
operation. Most compiled languages have their own libraries which must be
linked with a program produced by the corresponding compiler. In
addition, the user may have a personal library of standard routines, and the
Panos library exists to provide the basic facilities such as 1/O and store
allocation which all the language libraries make reference to. Procedures in
the Panos library may also be referred to directly by user programs,
provided that the language concerned permits this.

The syntax of the list of library names is similar to that for the list of object
files described in section 8.5.l, i.e. files may be identified by simple
pathnames, by wild-card specifications, or a comma-separated list of any

OPS Issue 1

	

13 3

combination of these; the default extension applied to a library file name is
-lib. All files so specified must exist, even if they are not actually required to
complete the link operation.

Symbolic Naming

Symbolic naming may be used to automate the command. In addition to
accepting file name specifications in the library list, the linker provides a
mechanism (which may be disabled see later) whereby a library may be
given a symbolic name: if when a library name is encountered, it is a simple
name (i.e. a name with no directory, drive or filing-system components),
and no explicit extension has been provided, then the linker will first check
if a library of that name (with -lib appended) exists in the current directory.
If one does then that file will be used. Otherwise the linker will check for
the existence of a global string whose name is of the form
` Link$Lib: < name >', where < name > is the simple library name provided.
If there is no such string then an error is generated; if there is one then its
value is interpreted as identifying a library file or group of library files.

The permitted syntax of the string value is the same as the syntax of a list of
library files (as above) except that no attempt is made to translate a simple
name via the symbolic name mechanism, and hence a symbolic name may
not be recursively defined. The main purpose of symbolic library naming is
to permit easy reference to frequently used libraries (e.g. the language
libraries for each compiled language) - it is only necessary to remember the
symbolic name of such a library, rather than its full pathname, in order to
include it in the linking operation.

Examples of values which might be set up for symbolic names (typically in
the !Panos initialisation command file) are:

$ set var Link$Lib:pas

	

"$.PanosLib.pas"

$ set var Link$Lib:f77

	

"DFS::2.f77"

$ set var Link$Lib:BBCSound

	

":2.sound1,:3.sound2"

$ set var Link$Lib:graphics

	

"NFS:$.PanosUtiLs.Graphics"

These would then be used by referring, in the context of a library list, to
` pas', `f77', `BBCSound', and `graphics'.

134

	

OPS Issue I

Chapter 8

Linker

Standard Libraries

In addition to any libraries given on the command line or in a control file,
the linker will look for a list of libraries specified in the global string
` Llnk$Lib-list' (unless this function has been disabled - see later). This
enables the programmer to specify, in advance, a standard set of libraries to
be searched, avoiding the necessity of including them in the command line
each time the linker is used. For example, executing the command:

set var link$lib_list '$.PanosLib.Panos,pas'

will cause the library file $.PanosLib.Panos-lib, and the library identified by
`pas' (typically a symbolic name) to be used automatically during each link.
The syntax of the value of this global string is exactly the same as for the
library list argument on the command line, i.e. a list of one or more
symbolic names, pathnames or wild-card specifications, with multiple list
elements separated by commas. The linker checks for the existence of this
variable, and any files named in it, after it has looked for all other libraries
explicitly named in the linking operation.

The order of search is important when using libraries, as once a symbolic
reference is satisfied from one library, it will not be searched for in another
library. The order is: first any libraries specified in a -via file are searched,
then any libraries given on the command line, and finally the link$lib-list
global string (if it has been defined) is used. In each case the library order is
that in which the libraries occur in the list, and for wild-card specifications
the order is determined by the Panos wild-card filename expansion
procedures.

Disabling Symbolic Library Names

It may be desirable in some circumstances to prevent the linker from
attempting to treat simple library names as symbolic ones. If this is the case
then including the state keyword -nolibtrans on the command line will have
the required effect, i.e. the linker will assume that all names given in the
context of a library list are actual file names.

OPS Issue 1

	

13 5

Chapter 8

Disabling Standard Library Searches

It may be required that, for whatever reason, the list of standard libraries
named in the global string Link$Lib-Jist should not be searched by the
linker. It is possible to achieve this effect, by including the state keyword
-noliblist in the link command line; this is obviously preferable to the
alternative method which involves deleting the global string altogether.

8.5.3 Forced Files

A given input module will only be included in the image file if it is
necessary to load that module to satisfy a symbolic reference of some sort. If
it is desired to ensure that all modules in a file or set of files are to be
loaded, the keyword -force may be given on the command line, followed by
a list of object files. All modules in the specified files will be included in the
image file. The permitted syntax of this (aof file list) argument is identical to
that for ordinary object files (see section 8.5.l). This facility is provided to
handle the situation where a particular program or language system uses a
non-standard internal linkage mechanism which does not involve direct
symbolic references.

8.5.4 Control File

In some circumstances a large number of files may require to be linked
together, such that it may not be convenient (or even possible) to enter all of
the names on a single command line. This could arise if, for reasons of
modularity and maintainability, a large program is being developed which is
built out of a number of small, separately compiled units. In this case it
would be tedious and error-prone to have to type all the object file names at
every linking operation in the development process.

To eliminate this kind of problem, a facility is provided whereby a file may
be prepared which contains the names of the files to be linked together, and
the linker will read the names from this file rather than requiring them all
to be present on the command line. The file is in a straightforward textual
format, and may be prepared by the use of the standard Panos editor. The
syntax of the file contents is given as:

13 6

	

OPS Issue I

Linker

((-OBJECT) aof file list(-aof))

(-FORCE aof file list(-aof))

1f-LIBRARY) lib file list(-lib))

The actual contents of the file may be split across a number of lines
separated by the standard newline character NL (ASCII LF, value 10);
provided that the break does not occur within a file-name or keyword. The
newline character is treated as a space for purposes of parsing the file. The
syntax of the file list arguments is exactly the same as for the equivalent
arguments on the command line itself, as detailed in the corresponding
sections below.

Note that if the -VIA option is given on the command line, it is not
necessary for any object or library file names to appear on it, but if they do
then they will be processed after the file lists given within the control file,
i.e. each complete set of object files (ordinary and/or forced object files, and
library files) will be made up of the appropriate arguments from the control
file followed by any corresponding arguments from the command line. The
order of processing of the two sets however remains the same, i.e. all object
files are processed before any library files.

An example of a link command using this option might be:

-> link -via Sort

where the file Sort-Ink contains the following lines:

Sort, SortSubl, SortSub2, IO.Forms, IO.Block, IO.VDUControl,
FileOutput,
FileInput, Verify, Compare
-Library Pascal, DBLib?

8.5.5 Image File

The final output from the linker is a relocatable image format (RIF) file. If
the -image keyword is not present in the command line, the output will be
placed in < obj 1 > -rif, where < obj 1 > is the name of the first file specified
as an object file (or a forced file if there are no ordinary object files).
Alternatively, the user may explicitly supply a name to be used by preceding
it with '-image'. For example

OPS Issue 1

	

13 7

Chapter 8

-> link gentest pas -image gent

will place the image file in gen2-rif The default extension -rif will be used
unless the supplied name includes an extension.

8.5.6 Producing a Link Map

The linker can be made to produce a map of the image file. This is a textual
(read/printable) file containing details of the internal structure of the image,
including the values of the global symbols defined within it. Two types of
map are available, a full one which gives details of the various store areas,
modules and symbols used, and a shorter version which omits the area and
module information.

A map is produced by including one of the keywords -map or -shortmap on
the command line. If this is followed by the name of a file or device, the
map output is sent there. (For file output, the extension -map is added to
the name unless it already has an extension.) Otherwise it is sent to
< image > -map, where < image > is the name of the image file without its
-rif extension.

8.5.7 Absolute Images

As already mentioned, the normal output file of the linker is a file in
Relocatable Image Format. This is suitable for loading and execution of the
file under the Panos operating system. A feature of this format is that a RIF
file may be loaded and run at any address. Further, references to Panos
facilities may be made symbolically, to be resolved at load time. This
ensures that a program developed under one configuration of Panos will run
under another.

The .alternative is to make the linker produce an absolute file (with the
extension -abs) which will load and run at one address only. Such a file is
suitable for execution under Pandora, not Panos, and no reference may be
made to Panos facilities. This is likely to be practicable only with assembler
language code.

An absolute output file is created by giving the keyword -absolute in the
command line. By default, the loading and execution address of the -abs file
is 16-00, suitable for loading under Pandora. The keyword -base
(described in section 8.5.8) may be used to set a different address.

13 8

	

OPS Issue 1

8.5.8 Base Address Specification

As mentioned in section 8.5.7, it is possible for the linker to produce an
absolute format image rather than a relocatable one. In this case the
keyword -base may be used to set the absolute base address for such a file; if
it is supplied then absolute mode is assumed (i.e. it is as if the keyword
-absolute had been specified). The keyword -base should be followed by a
cardinal number, eg 1024, 16-.000, which is the desired address where the
image should be loaded: the linker structures the image so that this is also
the execution address.

8.6 Feedback and Errors

8.6.1 Redirecting Error Messages

If the linker fails to resolve all the required references, or for any other
reason does not successfully complete the linking operation, error messages
will be produced. In common with other Panos utilities (see 4.9.l) these are
normally sent to the special stream `error:' (the screen by default), but by
giving the keyword -error followed by the name of a file or device (e.g.
printer:), they may be redirected to the named destination.

Note that error messages relating to the non-existence of files, and any other
problems associated with the command line arguments themselves will not
be re-directed in this way; the mechanism is principally of use in the
diagnosis of problems to do with global symbols, e.g. unsatisfied references
and multiple definitions.

Lima

OPS Issue 1

	

13 9

9 Problems

This brief chapter lists a number of common problems in using Patios, that
may confront the user, and suggests possible remedial action.

See also section 7.8 which describes editor-specific problems, and the User
Guide supplied with the system which describes problems relating to
hardware, and to installation.

Open Files

If a message of the form:

File already open

appears, particularly if it has been necessary to make an emergency exit to a
program (e.g. by switching the machine off), then it is possible that one or
more files have been left open. Type:

-> star close

Disc Full

If a message is displayed stating that the disc (Floppy or Winchester) is full,
t ry deleting unwanted files. Particularly with floppy discs, it may be
necessary to compact (i.e. move parts of the disc into a contiguous area).
This is achieved in Panos by ensuring that the drive to be compacted is the
current working drive, and then using a star command:

-> set dir dfs::1

-> star compact

BBC Text Files

BBC Microcomputer text files use a different (and non-standard) end of line
character. If it is desired to transfer text files to or from a BBC
Microcomputer, these characters should be converted. See 7.7.2 for one
solution.

OPS Issue 1

	

141

Chapter 9

Trouble Reading Floppy Discs

There are several different floppy disc formats available for the BBC
Microcomputer, and Acorn Cambridge Workstations. In the former case
these include 40 or 80 track, single or double sided, single (FM) or double
density (MFM), and DFS or ADFS. Discs of one format will not be read if
a different format is expected. This is a potential cause of trouble.

Floppy Disc Performance

If files appear to be read or written slower than might be expected from or
to floppy disc, or alternatively the disc does not operate at all, it may be that
the drive parameters are incorrectly configured. Panos is supplied with the
! Config file set for fast speed drives, although a slow version is provided
also. See the Configure command for details.

Trouble Printing

If no output appears on a printer although data have been sent to device
printer:, it may be that the printer is not configured properly. See the
Configure command for details.

Trouble Porting Programs

There are of course many possible difficulties. One frequently occurring
one is simply caused by the incorrect use of options with the compilers. For
example, the Pascal compiler accepts strict ISO Pascal only by default. If
language extensions are required, the -extend option must be used.

Trouble Configuring on Econet

The speed of the network may be too high for this application. Alternatively
too many users may overload the network. The network traffic will be very
different with this application than for others using BBC Microcomputers
where program size is much smaller. Contact your supplier for advice.

142

	

OPS Issue 1

Problems

Lost Programs or Data

Computers are generally very reliable, and users are generally very careful.
Nevertheless, important files are sometimes lost through accident. You
have been warned! Keep backups!

OPS Issue 1

	

143

Appendix A

Table of Editor Character Codes

The table represents the mapping between keystrokes and character codes.
To insert a given code, type CTRL - \ followed by the key combination
for that code.

Abbreviations

RET

	

RETURN

SPC

	

SPACE
S+L

	

SHIFT LOCK

DEL

	

DEL TE

CPI'

	

COPY

LFT

	

Left arrow
RHT

	

Right arrow
DWN

	

Down arrow
UP

	

Up arrow
S&C	SHIFT -CTRL

C

	

CTRL

S	SHIFT FT

ESC

	

CAPE

OPS Issue 1

	

145

I x0 |x1 Ix2 |0 Ix4 Ix5 Ix6 |x7 |x8 Ix9 IxA Ix8 IxC IxD IxE IxF |

0x | @ | A | B | C | D | E | F | G 1 H 1 1 | J 1 K | L |RETI N | 0 |

I C I C I C I C i C I C I C I C I C I C I C I C I C I I C I C I

1x 1 P | Q | R | S 1 T I U | V 1 W | X | Y | Z | [| \ | 1 | 1 _ |

I C I C I C I C I C I C I C I C I C I C I C I C I C I C I C i C |

2x |SPC| ! 1 " | q I $ I Z | & | ' I (|) I * I + I

	

I - | . I / I

I s | S I s I s I S I S I S I S I S | s I S !

	

I

	

I

	

I

	

I

3x | 0 | 1 1 2 | 3 1 4 | 5 | 6 | 7 | 8 1 9 1 : 1 ; | < | = 1 > | ? I

I

	

I

	

I

	

I

	

I

	

I

	

i

	

I

	

I

	

I

	

I

	

I

	

I S I S I S I s I

4x|@1 A| B| C1 D| E| F | G I H | I | J | K | L | M | N | 0 |

! S+LIS+LIS+LIS+LIS+LIS+LIS+LIS+LIS+L!S+LIS+LIS+LIS+LIS+LIS+LIS+LI

5x | P | Q | R | S | T | U | V 1 W | X | Y | Z | C 1 \ I I I 1 _ I

! S+LIS+LIS+LIS+LIS+LIS+LIS+LIS+LIS+LIS+LIS+LI I I I I I

6x | ' 1 a | b 1 c | d | e 1 f I g I h I i I j | k | L 1 m 1 n | o 1

I S 1

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

I

	

1

	

I

	

I

7x | p I q | r | s I t | u 1 v I w | x | y 1 z | (| I |) 1 _ !DELI

I

	

I

	

!

	

I

	

!

	

I

	

I

	

!

	

!

	

!

	

I

	

! S I S I S I S !

	

I

8x If0 If1 If2 If3 If4 If5 If6 If7 If8 If9 !TABICPYILFTIRHTIDWNIUP !

I

	

!

	

I

	

!

	

I

	

I

	

I

	

!

	

I

	

I

	

!

	

I

	

I

	

I

	

I

	

I

	

I

9x If0 If1 If2 If3 If4 If5 If6 If7 If8 If9 ITABICPYILFTIRHTIDWNIUP !

! S ! S I S ! S ! S I S ! S I S I S I S ! s I S I S I S ! S I S I

Ax If0 If1 If2 If3 If4 If5 If6 If7 If8 If9 !TABICPYILFTIRHTIDWNIUP I

! C I C ! C I C I C ! C ! C 1 C I C ! C I C I C ! C I C I C ! C I

Bx If0 If1 If2 If3 If4 If5 If6 If7 If8 If9 !TABICPYILFTIRHTIDWNIUP !

I S&C!S&CIS&CIS&C!S&CIS&CIS&C!S&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CI

Cx ! M !RETIRETIRETIESCIESCIESCIESCI 0 |DELIDELIDELI @ I SPCISPCISPCI

I C I S ! C IS&CI

	

! S ! C IS&CI C ! S ! C IS&CI s ! S ! C IS&CI

Dx| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | : I ; | ,| =1 .|?!

I S+C!S+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CI

Ex | @ I A | 8 1 C | D | E | F 1 G | H | 1 | J I K | L I M 1 N | 0 |

I S&CIS&C!S&CIS&CIS&C!S&C!S&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CI

Fx | P | Q | R 1 S | T | U | V I W I X | Y | Z I C I \ | 1 1 I _ 1

! S&C!S&CIS&C!S&CIS&CIS&C!S&C!S&CIS&CIS&CIS&C!S&CIS&CIS&CIS&CIS&CI

146

	

OPS Issue 1

Appendix B

Bibliography

Panos Programmer's Reference Manual
Acorn Computers Ltd
Part Number 0410,012
Issue 1 1985

Cambridge Co-Processor User Guide
Acorn Computers Ltd
Part Number 0410,000
Issue 1 1985

BBC Microcomputer User Guide
British Broadcasting Corporation
1982

The Advanced User Guide for the
BBC Micro
Bray, Dickens and Holmes
Cambridge Microcomputer Centre
1983

Disc Filing System User Guide
Acorn Computers Ltd
Part Number 0403,700
Issue 2 1983

Econet Level 2 File Server
User Guide
Acorn Computers Ltd
Part Number 0412,018
Issue 1 1983

Winchester Disc Filing System
User Guide
Acorn Computers Ltd
Part Number 0427,000
Issue 1 1984

BBC Microcomputer User
Guide
Acorn Computers Ltd
Part Number 0433,000
Issue 1 1984

OPS Issue 1

	

14 7

Index

A
Acorn Object Format 130
Argument decoding 45
Argument group 32
Argument string 32

B
bbc: 10
Block operations 112
Buffer 96, 99, 121
Built-in commands 39

C
Case 95
Cli$echo 42
Clock 104
Command file 41
Command line interpreter 27
Commenting 39
-Confirm 52
Control stream 51
Copy block 112
Cursor 95
Cursor keys 105

D
Delete block

	

112
DFS 97

E
-Error 5/
Error messages 51

F
-File 99
File extensions 54
Filing system 22
Function keys /07

G
Global variables 18

H
-Help 51
Help information 98

I
I/O processor 22
Image file 127
Input 10
Input/output 8

K
Kb: 9
Keyboard 9
Keyword 33

L
Library files 130
-Line 99
Line number 99
Line width 103
Linker

	

12 7

M
Macro 119
Marker 112
Move block 112

N
Newline characters 106
Null: 10

O
-Obey 99
Object files 127
Object libraries 127
Option specifier 46
Output 10

OPS Issue 1

	

149

P
Pandora 22
Parameter substitution 45
Patterns

replace 117
search 114

Position indicator 103
Printer: 10
Program 51, 52, 58
Prompt 30

R
Rawkb: 10
Rawvdu: 9
Relocatable Image Format 130
Replacement patterns 117
RS423 10
Run-time system 129

S
Screen mode 100
Search patterns 114
Serial line

	

10
Sys$time 30
Sys$date 104

T
Tabulation 95
TT: 10

V
Vdu: 9
-Verbosity 51

W
Welcome disc 94
Windows 121

150

	

OPS Issue 1

