Guide to c |
: % Wyeo
Operations = [

DKL NG, U
[SSTENDE
Y 1985

© Copyright Acorn Computers Limited 1985

Neither the whole or any part of the information contained in, or the
product described in, this manual may be reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information of a
technical nature and particulars of the product and its use (including the
information in this manual) are given by Acorn Computers in good faith.

In case of difficulty please contact your supplier. Deficiencies in software
and documentation should be notified in writing, using the Acorn Scientific
Fault Report Form to the following address:

Sales Department
Scientific Division
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge

C131 4N

All maintenance and service on the product must be carried out by Acorn
Computers' authorised agents. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of the product, and therefore Acorn Computers shall not be liable
for any loss or damage whatsoever arising from the use of any information
or particularsin, or any error or omission in, this manual, or any incorrect
use of the product.

Published by Acorn Computers Limited,
Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN.

Within this publication the term BBC is used as an abbreviation for the
British Broadcasting Corporation.

NOTE: A User Registration Card is supplied with the hardware. It isin
your interest to complete and return the card. Please notify Acorn Scientific
at the above address if this card is missing.

ISBN 0907876 439 Acorn Scientific

ii OPS Issue 1

Contents

11
12
13
14

21
22
23
24
241
25
251
252
253
254
255
256
2.6
27
271
2.7.2
2.8

31
3.2
33
331
3.3.2
3.33
334
34
35

41
4.2

Introduction

Context

Panos Design Objectives
Conventions in this Manual
Organisation of this Manual
Concepts

Introduction

User Interface Model
Program Control Model

1/0O System Model

Streams

Filing System Model

File Names

File Name Extensions

Time and DateStamping
Access Rights (Permissions)
Filing System Structure
Examples

Event Handling Model
Global Environment Variables
System Defined Variables
Aliasing Commands
Start-Up and Configuration Data
System Organisation
Introduction

Installation

Start-Up

L oading Panos

Pandora

Configuration Data (! Config)
Start-Up Command File (! Panos)
Standard Conventions
Components

Command Language
Introduction

Command Line Interpreter

OPS Issue 1

00 00 ~N O Ol O NN~ -

N NONRNNDNNMNNNNRNNNNNN N
X NN RDNNRRER SRR ERERERES

421
422
423
424
43

431
432
433
44

45

4.6

46.1
4.6.2
4.6.3
4.7

4.8

48.1
482
483
484
49

491
492
493

51
52
53
54
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Format of Commands

Search Path

Command Prompt

Action of the Command Interpreter
Arguments

Position and Keywords
Format of the Argument String
Examples of Command Lines
Line Editing

Wild Symbols

Data Formats

Simple Items

Time and Date Format

VDU Characteristics

Built-in Commands

Command Files

Basic Facilities

Parameters with Command Files
Parameter Substitution
Argument Decoding and the Keystring
Standard Conventions
Standard Arguments

Usage of Standard Arguments
Global Control

Feedback and Errors
Introduction

Error Messages

Feedback

Error Control

Help Information

Utilities

Introduction

Access Command

Catalogue Command
Configure Command

Copy Command

Create Command

Delete Command

Echo Command

Logon Command

28
28
30
30
30
31
32

35
37
37
37
38
39
41
41

45
50
51
53

57
57
57

59
60
61
61
63
65
70
72
75
77
79
81

6.10
6.11
6.12
6.13

7.1
711
7.1.2
7.2
73
731
732
733
7.4
7.4.1
742
743
74.4
745
7.4.6
75
751
752
753
75.4
755
75.6
757
7.58.
76
7.6.1
762
77
7.7.1
7.7.2
7.7.3
774
775
7.8

Rename Command

Set Command

Show Command

Star Command

Editor

Introduction

Context

Basic Facilities

Concepts

Editor Organisation
Installation

L oading the Editor

Global Variables

Display

Screen Layout

The Cursor

Position Indicator

Line Overspill

The Clock

Display of Special Characters
Command Language and Basic Functions
Printing Keys

Cursor Movement Keys
Deletion Keys

Control Keys

Function Keys

Other Keys

Prompt Windows (Dialogue)
Command Windows (Panos CLI)
Feedback and Errors

Help Information (and Windows)
Error Messages (and Windows)
Advanced Editor Functions
Block Editing

Searching and Replacing
Learnt Sequences

Moving the Cursor

Windows and Buffers
Problems

Linker

OPS Issue |

83
85
88
90
93
93
93
94
96
97
97
97
100
102
102
102
103
103
104
104
104
105
105
106
107
107
107
108
108
109
110
111
112
112
114
119
120
121

123
127

81

811
812
8.2

821
822
8.3

831
832
8.4

84.1
84.2
85

851
852
853
854
855
8.5.6
85.7
858
8.6

8.6.1

Introduction

Context

Basic Functions
Concepts

Linking Model
Linking under Panos
Linker Organisation
Installation

Global Variables
Command Language
General Form
Examples

Advanced Functions
Object Files

Library Files

Forced Files

Control File

Image File

Producing aLink Map

Absolute Images

Base Address Specification

Feedback and Errors

Redirecting Error Messages

Problems
Appendix A

Table of Character Codes

Appendix B
Bibliography

OPSIssuel

127
127
127
129
129
130
130
130
131
131
131
132
132
132
133
136
136
137
138
138
139
139
139
141
145
145
147
147

1 Introduction

1.1 Context

This document describes the Panos user interface. Asits name suggests, it is
aguide to operating Panos from the keyboard - how to edit files, how to list
directories etc. It does not deal with installation; thisis described in the

User Guide supplied with the system.

More specialised material, which will be of use to software developers, can
be found in the companion panos Programmer's Reference Manual which is
primarily concerned with the Panos procedure library.

More specificaly, the items dealt with in this Guide are as follows:

the concepts (or user model) that govern the behaviour of Panos
the organisation and configuration of a Panos system

the command language for requesting Panos to carry out an action
the operation of the Panos utilitiesincluding the editor and linker.

Panos provides the base for all systems software supplied with Cambridge
Series hardware with the exception of BBC Basic.

1.2 Panos Design Objectives

Panos was designed with the following objectives:

to provide minicomputer user facilities

to provide microcomputer control over the environment

to be a specialist single user system

to be installable and maintainable by the end-user

to provide support for professionals: both for end-users and
programmers

to berelatively simple, yet extensible

to be capable of operating on modest configurations

to take advantage of fast, 32 bit computer power

OPS Issue 1 1

Chapter |

to integrate with the BBC Microcomputer hardware and software
to exploit networking and other communications

to support high level language programming in many languages
to permit ease of learning and use

1.3 Conventionsin this M anual

The following conventions are observed in this publication:

L

Numbers not in decimal are prefixed by their base, for example
16 1A isdecimal 26; -2 1010is-10in decimal.

. Angled brackets refer to a class of objects, for example

< device name > means any one device.

3. Square brackets or braces enclose optional items.

. Theterm "BBC Microcomputer' should be extended to include the

term '10 Processor' as used in the Cambridge Workstation, and
vice-versa

1.4 Organisation of this Manual

This manual has been carefully structured to permit its use both as a
reference guide, and as a primer. This has been achieved by dividing it into
many relatively self-contained sections and sub-sections, ordering these
sections for the sequential reader, but providing numerous cross-references
for the browser. Some sections contain more specialist material; these may
be omitted on first reading.

The manual and its constituent parts have been separated into:

concepts that define the “user model'
organisational and configuration details
principles of the command language
feedback to the user (including errors)
operational (“how to') details.

OPS Issue |

Introduction

This structure applies both to the manual as awhole, and to individual
chapters where applicable. Thus Chapters 1 to 5 introduce, then describe
general concepts, organisation, command language, and feedback for Panos
as awhole. Chapters 7,8 and 6 detail operational use of the editor, linker,
and remaining utilities respectively. These three chapters are structured to
some extent in the same way as the whole, i.e. describe particular concepts,
command languages etc.

Before embarking on the operational detailsit will be helpful to read at least
some of the preliminary material.

OPSIssue 1 3

2 Concepts

2.1 Introduction

Context

This chapter presents many of the concepts that determine the “user model'
of Panos. They are described in amanner suitable for the end-user rather
than for the programmer.

Many of these concepts have an equivalent form for the programmer, and as
such are described in the Panos Programmer's Reference Manual as follows:

Storage Management Module Store Chapter 5
Input and Output Module 10 Chapter 6
Filing Systems Module File Chapter 7
Program Loading Module Loader Chapter 8
Condition Handling Module Handler Chapter 11
Asynchronous Events Module Handler Chapter 12
Global Strings Module Global String Chapter 13
Program Control Mbdul e Proarnm Chnnfpr 14

Organisation of this Chapter

This chapter simply describes in turn the conceptual models for the user
interface, program control, input and output, filing system, event handling,
global variables, and configuration data.

2.2 User Interface M odel

The model for interaction with the user is described in this section.

OPS Issue 1 5

Chapter 2

Input/Output, and hence dialogue with the user is based on the notion of
streams. There are four such logical streams associated with Panos:

input stream
output stream
control stream
error stream

The input stream is used for the data being operated on by a program, for

example numeric values by a user program, or text prepared for atext
formatter.

The output stream is used for the results of a program, for example atable
of values from a user program, or formatted text from a text formatter.

The control stream isfor input from the user to control the action of a
program, for example the response to a prompt, or the name of a program
or command to run. Associated with the device for such input is the device
used for the output of prompts. By default the control stream uses the
screen (vdu) for output, and the keyboard for input.

The error stream is for feedback to the user, i.e. error messages, warnings,
or for confirmatory messages to provide reassurance. By default the error
stream uses the screen.

Logical streams may be associated with physical streams and hence with
actua devicesin anumber of ways. If the user takes no specific action, the
default mappings as indicated above are used. Alternatively, the user may
explicitly redirect input or output to a particular device. For example, error
messages could be redirected to a printer.

Thereis no requirement on programsto use logical streams, so many will
use direct 1/0 from or to physical streams instead. However, where
appropriate, al the supplied systems software follows the model of
interaction as described. Error and Control streams are used by most system
programs, input and output streams are however mainly applicable to filter
type programs.

Interaction with the user is al'so governed to some extent by the values of
certain system attributes:

6 OPS Issuel

Concepts

- global (environment) variables

- vdu characteristics

- tab settings

- function key bindings

- date and time

- working directories
These attributes have certain default values or may be set by users for the
duration of Panos use. They are described in full later.

2.3 Program Control M odel

Panos provides support for the execution of programs, both user and
system. More specifically it provides a runtime environment for programs,
in particular for programs written in high-level languages, and including
those written in mixed languages.

Panos supports a procedural model of program execution. This means that
programs may call other programs and resume execution on return. This
property is capitalised on by the command line interpreter and by the
editor.

In addition to the execution of single programs, Panos is also able to obey
command seguences, and thus to execute a sequence of programs. Thisis
achieved through the use of command files.

Communication between two programs running sequentially or
procedurally may be achieved through the use of global variables.

When a program is invoked from its parent (which typically would be the
command line interpreter), itsinitial environment consists of:

the logical streams of its parent (see 2.4),

its own memory,

the same environment for events as its parent (see 2.6)

the same global variables asits parent (see 2.7), since these are a shared
resource.

For full details see the Panos Programmer's Reference Manual

OPS Issue 1 7

Chapter 2

2.4 1/0O System Model

Panos presents its own device and filing system modelsto the user. These
models are currently implemented by lower level BBC Microcomputer
mechanisms. For example, Panos files are simply stored and maintained by
afiling system such as the DFS (for floppy disc), ADFS (for Winchester or
MFM floppy), or NFS (for file server).

The user need not be aware of the lower level implementation except
perhaps when transferring BBC Microcomputer files to or from Panos, and
to some extent when the underlying filing system imposes certain
restrictions.

Panos is able to provide more useful higher level properties than the raw
filing system, for example, time-stamping of files, file name extensions, and
filing system names forming part of afile specification.

Within Panos, devices and filing systems are treated uniformly wherever
possible. For instance, when using the utilities, specifying adevice or filing
system for output follows the same format.

In this section the Panos I/O model is described. This appliesto all devices.

The Panosfiling system model for devices that maintain directories extends
the 1/0O model, and is described in the next section.

For further details, refer to Chapter 6 of the Panos Programmer's Reference
Manual.

2.4.1 Streams

Input/output is based upon the concept of streams. An 1/O aobject may be a
device or afile, and must be identified by a string (i.e. textual name) with
one of the following syntactic forms:

(@ <device name >
(b) <filing system name > : < file name >
() <filename>

The case (upper or lower) of < device name > and < filing system name > is
not significant. The actual names of currently supported filing systems and
devices are listed in Tables 2-1 and 2-2.

8 OPS Issue 1

Concepts

Examples (most showing afile called data-dat) are:

(a vdu: screen (visual display unit)
(b) adfs:$.data-dat fileinroot directory on adfs
(c) data-dat filein current working directory

(d) dfs:data-dat fileon current DFSdrive
(e) dfs:2.data-dat fileon DFSdrive?2

Note the position of the colon after the filing system or device name.
Because the DFSfiling system also uses a colon to specify the drive number,
in some cases, two colons will need to be used; onefor the device, and one
for thedrive number, asin example (€).

The streams described in this section are physical and refer to actual
devices; thelogical streams of the Panos model of interaction may be
mapped onto physical streams, (see 2.2 and 4.9.1). Thelogical streamsare
listed in Table 2-3.

Table 2-1 Filing System Names

DFS - disc filing system (floppy disc)
ADFS - advanced disc filing system (Winchester, MFM floppies)
NFS - network filing system (for Econet file server)

Table 2-2 Physical Devices

vdu:
Refersto the screen (output only) with filtering of control characters.
Only ASCII characters(32..126), clear-screen (FF), newline
(NL =LF) and carriage-return (CR) are sent to the screen. All others
areoutput asa pair of hexadecimal digits enclosed in square brackets.

rawvdu:
Refersto the screen (for output only) with no filtering. The effect is
exactly as defined for VDU codes.

kb:
Refersto the machine'skeyboard (input only) with both
carriage-return (CR) and line-feed (LF) being read as newline (NL).
Input isbuffered and line editing (see 4.4) isenabled. Only the printing

OPS Issue 1 9

Chapter 2

characters and line-editing characters are accepted, plus escaPe and
cre - b . All othersareignored.

rawkb:
Refersto the keyboard (input only) with no trandlation or filtering of
characters. Raw characters are read directly from the keyboard and
are not echoed.

bbc:
A combination of rawvdu: for output and rawkb: for input.

tt:
A combination of vdu: for output and kb: for input.

RS423:
Refersto the serial line (input or output).

printer:
(or Ip:) Refersto the printer (output only).

null:
Refersto a “sink'. Output to this device is discarded. Input from this
device appears asif end of file were reached immediately.

Table 2-3 Logical Streams (Special Devices)

Input: Current Input Stream
Output. Current Output Stream
Control: Current Control Stream
Error: Current Error Stream

2.5 Filing System M odel

The Panosfiling system model presents alogical filing system to the user.
This model is currently implemented partly by Panos directly, and partly be
mappings onto more primitive BBC Microcomputer, i.e. physical filing
systems. In principle, the user need only know about the Panos model, but
see below.

10 OPS Issue 1

Concepts

Wherever possible Panos presents a uniform view regardless of the physical
filing system, but where there are differences, limitations of the physical
system may impose restrictions. There are three possibilities.

Firstly (and usually) the user request is carried out exactly as requested.
Secondly, Panos will sometimes be able to make an obvious interpretation,
for example, date-stamps have different granularity in different systems, so
fractions of a second may need to be rounded. Finally, sometimes there will
be restrictions, for example alegal length Panos name will always map onto
an ADFS or NFS name, but not onto a DFS name. The user request will
be rejected in such a situation.

The Panos filing system model has the following components which are
described in detail in the remainder of this section:

- file names

- file name extensions

-time and date stamping

- access rights (permissions)

- hierachical directory structure

Together with size, these determine the file attributes.

2.5.1 File Names

Panos basic file names (with no directory or drive prefix) consist of a base
filename plus an extension separated by a hyphen Names may be of any
length, although in practice the physical filing system will impose
constraints.

Legal charactersin names are:

alphanumeric characters A-Z, a-z, 0-9,
special characters | _/

The characters $, &, _, , . : and - have special meanings (see below). File
names are case (lower/upper) insensitive, that is case isignored in referring
to file names, although files are stored with names in mixed case.

OPS Issue 1 11

Chapter 2

2.5.2 File Name Extensions

The Panos filing system supports the concept of typed files through the
mechanism of file name extensions. Those defined by Acorn are shownin
Table 2-4. File typing is not enforced, but many of the system programs
such as the language compilers rely on these conventions.

File name extensions are from 0-4 charactersin length, plus the prefix
character "='". Since they form part of the file name, they consist of the same
legal characters.

Extensions are mapped onto the physical filing system. At present these use
rules defined by the user, but set up in the Panos initialisation file through
the mechanism of global variables.

The mapping is from the Panos file extension onto a filing system directory.
On the ADFS and NFS, the directory takes the same letters as its name
prefixed by an underscore. On the DFS, the directory has a single-letter
name as shown in Table 2-4.

So, for example, the file name "Progl-Pas will map onto adirectory called

" pas onthe ADFS or NFS, and its physical nameis”™_pas.Progl'. On DFS,
the extension "-Pas' is mapped onto a single-letter directory, p', and its
physical nameisthus “p.Progl'. Thisisachieved (in !Panos) as follows:

-> set var file$dfs:-pas "p.-"

Although it is normally necessary for the user to create directories explicitly
on the ADFS and NFS for the purpose of file store organisation, it is not
required in this context. Such directories are “hidden' within Panos,
athough they will become explicit when, say, cataloguing a Winchester disc
under Pandora or on a BBC Microcomputer. In fact, the user normally
need only be aware of these mappings when reading or writing BBC
Microcomputer files.

Standard Conventions

By convention, certain file name extensions and associated meanings are
employed within Panos. These are shown in Table 2-4 along with the DFS
mapping. Table 2-5 shows those DFS directories reserved for use by Acorn.
and those available for users or for packages.

12 OPS Issue 1

Table 2-4 File Types and Extensions

extn DFS Meaning

-abs x Absolute binary file (for execution under Pandora).
-aof o Object file in Acorn Object Format.
-asm a Assembler source file.
-bbc 6 BBC Microcomputer host code.
-c c C source file.
-cmd e Command file.
-dat d Data file (arbitrary format).
77 f. Fortran77 source file.
-h h header file for use with C.
[lib g Object file in AOF used as a library.
dis y Listing file.
[sp L Lisp source file.
-map m. Map files (FORTRAN 77 and Linker)
-pas p Pascal source file.
rif ot Relocatable Image produced by Panos Linker.
-SIC 8 Source text (program in unspecified language)
-tmp z Temporary file.
-txt t. Text file.
Also, for release on floppy disc only

$. Pandora files.

i Lisp image directory.

Table 2-5 Unused DFS Directories

Reserved for Acorn
J- n.
7. 8. 9.

OPS Issue 1

Concepts

13

Chapter 2

Availablefor Use
b. 0.

ansx

u. V.
0. 1
3 4

2.5.3 Time and DateStamping

Panos files may have associated with them the time and date that they were
first created. In practice many of the utilities such asthe editor “create' the
file afresh every timeit isupdated. If the time hasnot been set by the user
when switching the machine on or typing CTRL - BRE K thenthedate
stamp will be ‘unset'. Non-Panos files such as Basic programs appear to
Panos asif they too have unset date stamps.

The date stamp iscurrently stored as part of the directory entry in the fields
normally used by the load and execution addresses (which Patios does not
need as such). Careisthereforerequired when using Panosto copy
non-Panos files. Use the -exact option with the Copy command.

2.5.4 Access Rights (Permissions)

The Panos model of permissions (rightsto access a particular file) follows
that of the ADFSor NFS. For details, seefor examplethe Winchester Disc
Filing System User Guide. See also the Access command.

2.5.5 Filing System Structure

The Panos model of filing system structure followsthat of the ADFS or
NFS, i.e. it ishierarchical. For full details, see for examplethe winchester
Disc Filing System User Guide.

The ADFS and NFS have a hierarchy that can extend to any depth, i.e. at
any level the contents of a directory may be “leaf' filesor further directories.
Thetop level directory iscalled the ‘root'. On the NFS each user is
allocated a directory further down the structure called the 'log-on'
directory.

14 OPS Issue 1

Concepts

Although the DFS has aflat directory structure, Panostreatsit in the same
way subject to the constraint that thereisonly one level of sub-directory
possible below theroot directory, so the longest path on a given driveis
$.<dir>.<name >.

Associated concepts are directories, pathnames, object specifications, and
working directories; these are now described in turn.

Directories

Panos currently inheritsthe properties of the physical filing systems, thus,
for example, thereisalimit of 47 separatefiles per directory within ADFS.
There are no separate directories within Panos on the DFS since the single
level structure provided isused by Panosfor the file name extension.

Object Specifications and Pathnames

Torefer to afile, i.e. to give an “object specification’, it is always possible to
supply afull “Pathname'. For example:

adfs::0. $.ReportsMay. Visit-txt
dfs:1.$. Visit-txt

Thefirst might be atext file describing a visit residing in directory May
which itself residesin directory Reportswhich isin theroot directory of the
ADFSfiling system on a Winchester. The second might be the samefile
but on drive 1 of afloppy disc.

The full pathname startswith a device and/or drive name, and isfollowed
by afile name starting with $or &.

In practice file referencestend to be localised, so there are a number of
mechanismsfor shortening the full pathname. These include the use of
“(current) working directories, of special symbals, and of wild symbols.

Working Directories

Associated with each filing system on a particular machineisa ‘working
directory'. One of theseisthe “current working directory'. Initially the
working directory istheroot directory for each device on drive number O,
although !'Panos as supplied will alter this. The current working directory

OPSssue 1 15

Chapter 2

may be changed by means of the Set command, and inspected with the
Show command. This also will change the working directory for the filing
system referenced, and thiswill remain in force until a subsequent change
for that filing system.

A relative object specification is one for which the file name does not start
with $ or &. Such a specification is taken to refer to the working directory.
If adevice nameis supplied, then it refers to the working directory for that
device, otherwise to the current working directory.

A full path name has $ or & starting the file name. Such a specificationis
taken to refer to the root or log-on directory respectively. If a device name
issupplied, then it refersto that device, otherwise to the device associated
with the current working directory.

For example, if there were a command called “select’, the following series of
commands would refer to files whose full path names are shown on the
right hand side:

> select $.index-txt adfs::0.$.index-txt
> sel ect $.heroes.|udw g-txt aifs::0.8 heroesLuduig-txt
> set dir $.heroes
-> select ludw g-txt adfs:: 0. $. heroes. | udw g-t xt
> set dir dfs::1
> sel ect johann-txt dfs::1.$.johann-txt
-> sel ect adfs:|udw g-txt adfs:: 0. $. heroes. | udwi g-t xt

Thereis afurther, and separate mechanism for referring to the name of a
program or command file to be executed. See under “Search Path' in
section 4.2.2.

The special symbols that may form part of an object specification are shown
in Table 2-6:

Table 2-6 Special Svmbols

$ root directory

& log on directory

® (current) working directory
parent directory

- file name extension separator
directory separator

16 OPS Issue 1

Concepts

2.5.6 Examples

Examples (for thefile data-dat) are:

(a) data-dat in current working directory

(b) adfs::0.$.data-dat full path name

(c) adfs:data-dat in adfsworking directory

(d) MyDir.data-dat in directory MyDir within current
working directory

(€) $.MyDir .data-dat in directory $.MyDir

(f) data-dat in parent directory

(9) dfs::2.data-dat on floppy disc drive 2

(h) dfs:d.data physical file name

2.6 Event Handling M odel

Panos provides facilitiesfor dealing with both synchronous and
asynchronous events. I n this context, the former are sometimes called
conditions or exceptions.

Exceptions ar e synchronous to the flow of program execution, and may be
‘hard' e.g. division by zero, or “soft', i.e. signalled by the programmer
through hisor her code.

Asynchronous events ar e generated by interruptsin the 1/0O Processor, and
include the ESCAPE key being pressed.

Events may be used within a program to help organise control flow. Often
they are used to terminate a program when an “error' occurs. See Chapter 5
for more details. It ispossiblefor the high-level language programmer to
trap eventsand take suitable recovery action. Seethe Panos Programmer's
Reference Manual, Chapters 11 and 12 for details.

OPS Issue 1 17

Chapter 2

2.7 Global Environment Variables

The way in which Panos behaves is determined to an extent by the settings
of the global variables sometimes referred to as global strings. See 2.3 for
the context of their use, and Chapter 13 of the Panos Programmer's
Reference Manual for afull description.

A global variable has a name and a string value. To alter the value of a
variable use the Set command, (or the Set built-in command). To inspect
the value of one or more variables use the Show command. The SY S$
variables are an exception: they cannot be changed in this way.

To set the value of avariable each time Panosis run, edit the ! Panos
command file.

For example, to change the Panos prompt, then inspect the values of the
PROGRAMS variables, type:

-> set var CLI$prompt
& show var PROGRAM$*

Enclosing the value of the global variable in double quotesis not normally
necessary, but will allow leading and trailing spacesto be included asin the
example.

A variable is declared through being set, i.e. beforeit is given avalue it does
not exist. Some variables, e.g. CLI$Prompt are initially set by the system.

2.7.1 System Defined Variables

There are anumber of global variables defined by the system, most of which
areinitialised by Panositself, or whenever Panos is entered through
execution of the Panos command file. These variables generally hold
information relating to the state of the environment, hence their name.

The global variables defined by the system are shown for completenessin
Table 2-7. The meaning and significance of each variable or group of
variables are explained in the sections referred to in the Table.

18 OPS Issue 1

Table 2-7 System Defined Global Variables

CLI$ResultCode result code of last program to run
CLI$Path search path for Panos commands
CLI$Prompt Panos CLI prompt
CLI$Echo determines echoing of

command files
CLI$Stop defines termination condition

in command files
FILES$-ext file transformation for “ext'
FILES$dfs:-ext file transformation for “ext' on DFS
SYS$Time system time (textual form)
SYS$Date system date (textual form)
SYS$Version Panos version number

PROGRAMS$V erbosity controls feedback
PROGRAMS$Help controls help option
PROGRAMSIdentify controlsidentify option
PROGRAMS$Force controls permission override
PROGRAMS$Confirm controls confirmation requirement
PROGRAMS$Abandon controls action following an error

Alias$cmd alias of cmd
Edit$... for use by Editor
Link$... for use by Linker

Concepts

54
422
423

48|

481
252
252

46.2
4.6.2

49|
49|
491
49|
49|
54

2.1.2

7.3.3
832

The PROGRAM$ variables control the global settings of certain options

used with most Panos utilities.

2.7.2 Aliasing Commands

Aliashxxx isaspecial form for global variables that enables aliases or
abbreviations to be set up for individual command lines to suit personal (or

system) taste. Command files provide a more generalised, but more
expensive mechanism.

If aglobal variable aliashxxx has value "yyy", where yyy is any string, then

the command:

OPS Issue 1

19

Chapter 2

> XXX args

will be interpreted asif the user had typed:
-> yyy args

For example:

.set alias$ed "edit -buffer 350000"
- set alias$cp Pascal
.set alias$print "copy -to printer: -from"

Note that the command line is re-evaluated after the substitution of one
alias so that it is possible to alias an alias. It is also possible to construct an
alias which allows parameter substitution; in this case, an alias string is
made of two parts separated by the character "-'. The substring before the
-'isakeystring, the result of which will be used for substitution of the
substring after the "-'. For example:

-> set alias$saydone ".key S/'l-echo<S> done!"

-> saydone filel

will cause the command echo f i 1el done! to be executed. See sections 4.8
for details of parameter substitution and the keystring.

2.8 Start-Up and Configuration Data

In addition to the values of global (environment) variables (see 2.7), the
behaviour of the system is also governed by configuration data. These data
relate to lower level implementation features such as keyboard auto-repeat
rates, printer assignment, etc.), but unlike global variables they may not be
set once Patios is running.

On initialisation, Patios reads two files: the configuration datafile, "!Config
and the command file " Panos'. Details of this process, and the default or
initial values are given in Chapter 3.

20 OPS |ssue 1

3 System Organisation

3.1 Introduction

Context

This chapter describes the organisation of a Panos system: its constituent
parts, how to configureit for a particular purpose, and how to start it up.

Details of installation and other introductory material may be found in the
User Guide supplied with the system. Particular details referring to the
organisation of certain utilities are given later in the relevant Chapters.

Organisation of this Chapter

First, details of configuring, loading and executing Panos are given. Thisis
followed by a summary of system wide standard conventions. Finally the
individual components of a Panos system are listed for reference.

3.2 Installation

The installation of Panos and its utilities is described in the User Guide
supplied with the system.

3.3 Start-Up

Panos isloaded and run ("booted') from afiling system on which it has
previously been installed.

On initialisation, Panos reads two files: the system configuration file,
IConfig' which sets up a new configuration (this concerns data that relate to
lower level implementation features such as keyboard auto-repeat rates,
printer assignment, etc.); then it obeys the command file “! Panos'. Both of
these files can be altered (although in different ways) from within Panos by
the user to suit a particular system.

OPS Issue 1 21

Chapter 3

3.3.1 Loading Panos

Patios is loaded as follows:

[) If necessary, select afiling system where Patios may be
found. Thisis only required if the currently selected
filing system is different from that where Patios s stored.

2) Logon to the network if Patiosisto be booted from NFS.
3) Run the Panos boot program.
4) Set the date and time using the Set utility.

5 Setupaloca environment, e.g. for a particular
package, if so required.

For example, to boot Patios from Winchester, type

*Panos

To boot Panos from the network, type for example:

*NET
*1 AM kvk roff
* PANOS

Further details, including instructions for the DFS are given in the User
Guide supplied with the system.

3.3.2 Pandora

Patiosis booted from the Pandora command prompt. Patios itself, as
currently implemented, relies upon Pandorawhich is afirmware kernel. It
performs several tasks, including communicating with the 1/O processor,
(which will be some form of BBC Microcomputer). It issuesa* prompt,
and passes input from the user to the 1/O Processor command line
interpreter. Users have access to the usual * commands such asfiling
system commands, *FX, * TV commands and so on, as described in the BB(
Microcomputer User Guide and elsawhere.

22 OPSIssue 1

System Organisation

At present, the following programs run directly under Pandora:

Bas32 BBCBASIC,

Asm32 Code produced by the Assembler (as an option),
Panos Operating system.

Documentation of Pandorais of very specialised interest, typically to
operating system developers only, and is found in the Panos Technical
Reference Manual.

3.3.3 Configuration Data (! Config)

These are introduced in section 2.8. A full list is shown in Table 3-I.

The settings may be atered by executing the Configure utility, but their
effect does not occur until Panosis re-initialised.

There are certain default values, shown in the Table, plus a set of values
supplied astheinitial values of the datafile. These are not necessarily the
same. The Configure program may need to be run when installing Panos
onto anew system.

The file !Config is updated by the Configure utility at the directory root (‘%)
level. Separate customised ! Config files can be created for a particular
application on any hierarchical filing system, or for individual users on the
Econet. When Panosis entered, it searchesfirstly in the current working
directory, and then in the root ($) directory for !Config. Econet users can
therefore have their own separate version of ! Config which is stored in the
‘&' (logging-on) directory.

Full Details about many of the characteristics can be foundina BBC
Microcomputer User Guide or equivalent.

OPSlssue 1 23

Chapter 3

Table 3-1 Configuration Data

[tem Default (for ADFS)
Screen Mode 3
Screen Vertical Shift 0
Interlace off
Keyboard auto-repeat rate 10
Keyboard auto-repeat delay 50
Caps Lock off
Default R$423 format 8 data bits
| stop bit
No Parity
RS$423 Receive baud rate 9600
R$423 Transmit baud rate 9600
Printer assignment parallel
Printer ignore character 0
Max no of modules 1024
Physical filename of Panos database $.PanosLib.PanData
Floppy disc drive speed Fast
Size of global variable table 1500

The "Physical filename of Panos database' should point to

“$.Panodlib.PanosData’ for an ADFS or NFS implementation; and
,:O.Pandata’ for the DFS. Note that three different versions of ! Config are
supplied on the distribution discs: ! Config (for the DFS), ! ConfiA (for the
ADFS/INFS), and ! ConfiS for slow floppy discs (DFS). Thefile !ConfiA is
automatically copied across from the distribution disc as $.! Config during
installation onto the ADFS or NFS. Users of slow floppy discs (i.e. with
slow access times) should replace ! Config with ! ConfiS before installation.
(use *RENAME).

The "Size of global variable table' refers to the number of bytes allocated to
the table which holds al of the Panos global variables. Thiswould need
updating if too many global variables were set.

The "Max no of modules' refers to the number of dotsin the physical
module table which are free for allocation for user program modules. See
the Panos Programmer's Reference Manual for more details.

24 OPS Issuel

System Organisation

3.3.4 Start-Up Command File (! Panos)

Thisisaregular command file, which is executed when Panosiis initialised.
The version supplied with the system is used to set the values of global
(environment) variables, (q.v.).

Command files, and the individual commands shown in the examples are
described in 4.8. To alter IPanos, the file can be edited just like any other
text file, (see Chapter 7).

The globa variablesinitialised in the supplied versions are summarised in
Table 3-2.

Table 3-2 Initialised Global Variables

CLI$Path set up search path
EDITS... to configure the editor
LINKS... to configurethe linker

LLS.. to configure Pascal and C
PASS... to configure Pascal
C$ to configure C

FILES... to set up file name extension mappings for ADFS and NFS
FILE$DFS... to set up file name extension mappings for DFS
ALIASS... to set up command abbreviations

For an example, list or edit the version supplied on the system.

3.4 Standard Conventions

Many of the ways Panos may be organised and installed are “soft', that is
may be implemented by the user. However, certain standard conventions
are adopted in the software as supplied and in the documentation. Some of
these conventions are described elsewhere in this manual, viz:

File Name Extensions 25.2
Standard Arguments 4.9

The conventions used for organisation of the discs into surfaces (for DFS)
or directories (ADFS or NFS) in described in Chapter 3 of the User Guide
supplied with the system.

CPS Issuel 25

Chapter 3

3.5 Components

A Panos system has the following individual components:

26

library of procedures organised into modules, memory resident
(PanData)

command line interpreter, memory resident (PanData)
system loader (Panos)

library of procedure names for resolving references (panos-lib)
set of utilities including an editor and linker

datafilesfor initialisation (!Panos, ! Config)

system defined global variables (in !Panos)

set of install command files (Install-cmd, I nstDFS-cmd)

set of language systems

set of conventions (see 3.4)

OPSlssue 1

4 Command Language

4.1 Introduction

Context

When Panos s entered, a system program (the command line interpreter) is
given control. The Panos command line interpreter interacts with the user
and, as its hame suggests, has the function of accepting commands and
executing programs, or interpreting command files. On system startup the
interpreter is set running, it outputs a prompt, and waits for acommand to
be entered.

The Panos command line interpreter conceptually is an ordinary user-level
program interfacing with Panos via the supplied library procedures (as
documented in the Panos Programmer's Reference Manual and executing
programs according to the procedural model. It isthe central component in
the user interface model.

Many of these user level aspects have an equivalent form for the
programmer, and as such are described in the Panos Programmer's
Reference Manual asfollows:;

Argument Decoding Module DecodeArgs Chapter 3
Data Formats and Conversions Module Convert Chapter 4
Time and Date formats Module TimeAndDate Chapter 10
Command Interpreter Module Command Chapter 15
Wild Symbols Module Wild Chapter 16

Organisation of this Chapter

The command intepreter has associated software for decoding arguments,
(see 4.3), wild symbol expansion, (see 4.5), Further, there are associated
conventions adopted where relevant by the utilities and compilers for
standard argument strings, (see 4.9). These combine to provide a uniform
model of interaction for the user.

OPSlssuel 27

Chapter 4

4.2 Command Line Interpreter

4.2.1 Format of Commands

In interactive mode (as opposed to command file mode) user input to the
command interpreter isin the form of text lines which have the format:

-> <CommandName> <argument string>

where < CommandName > is one of ;

() the name of abuilt-in." command
(2) the name of afile containing commands
(3) the name of afile containing a program

The program may be a user program, an application, or a system program
such as a utility or acompiler.

The < argument string > is described in section 4.3.

Theline may be edited asit istyped, e.g. to correct mistakes, by the use of
specia keys, see 4.4.

Commands and arguments are case insensitive as regards the user, (but not
for the programmer - see 4.8.4).

4.2.2 Search Path

Except in the case of built-in commands the interpreter must first find the
program or command file to execute. Since such files may in general be
user or system supplied, and may reside in several different places
depending on context (e.g. in several directories or disc drives), and will
probably be in adifferent place from any datafiles, it is necessary to provide
aspecia scheme for locating them.

The mechanism is that the interpreter searches a sequence of directories (or
drives) until it finds a file whose name matches the command,
(< CommandName >). The sequence or “Search Path' is set up by the user

28 OPSssuel

Command Language

by assigning a comma separ ated list of directoriesto the global variable
CLI$Path, and then executing the NewCommand built-in command. For
example:

(I) for DFS

-> Set CLI$Path dfs::0, dfs::2, dfs::1, dfs::3
-> NewCommand

(2) for ADFS

-> Set CLI$Path adfs:$. PanosLib, a
-> NewCommand

(3) for usewith an application on ADFS

-> Set CLI$Path adfs:$.PanosLib, adfs
-> NewCommand

In example (1), the four floppy disc drivesare searched in order, 0, 2,1, 3.
In example (2), first PanosLib is searched, then the current working
directory, although this could be the other way around. Thelatter case

would provide user pre-emption of system programs at the probable cost of
increased search time. In example (3), an application library has been added

tothe path.

The Set built-in command has been used in the examples, although the Set
command with “var' parameter would be equivalent.

Notethat the search path mechanism appliesto commandsonly. Thus if
the search path had been defined asin Example (1) above and the following

wer e executed:

-> Set Dir dfs::1
-> Copy Fred -to vdu:

Copy would be searched for, but Fred must bein the current working
directory.

Default search pathsare set up by the supplied !Panos command file.

OPS Issue 1 29

Chapter 4

4.2.3 Command Prompt

The user is prompted by the Panos prompt ->. This symbol, which isthe
value of the global variable CLI1$prompt may altered by use of the .set
command or set utility. The string is evaluated before printing, (see 4.8.3)
s0, for example, setting it to the global variable sys$time will cause the
current time to be used as a prompt. To include leading or trailing spaces,
enclose the prompt in double quotes. For an example see section 2.7.

4.2.4 Action of the Command Interpreter

The action of the command interpreter can be summarised as follows:

1) Theuser isprompted viathe control stream, (see 4.2.3);
2) A command is read from the control stream, (see 4.2.1);

3) The < CommandName > is extracted, and if applicable, the alias
operation is carried out (see section 2.7.2). Non built-in commands are
searched for (see 4.2.2);

4) Parameter substitution is carried out on the < argument string >, (see
48.3);

5 The remaining action depends on the type of command:
Built-In commands are executed directly (see 4.7),
Command files are obeyed by the interpreter (see 4.8),
using the substituted argument string
Program files are run (see below) - al Panos utilities will interpret
the substituted argument string in a standard way, (see 4.9).

A program fileisonein RIF format, i.e. contains relocatable machine code

as produced by the Panos linker, such afile isloaded and executed.
Program files should have the extension "-rif appended to the file name.

4.3 Arguments

The way in which the arguments following a command name are decoded
and interpreted depends on the program being run. However all Panos

30 OPS Issue 1

Command Language

utilities use standard conventions and software to promote consistency and
hence ease of use. All other programs are free to use the same scheme -
which forms the subject matter of this section.

Note that argument decoding is "defined' by the “programmer’, then “used'
by the “(end-)user'. It is the latter who is of more concern in this section,
the former in 4.8.4.

4.3.1 Position and Keywords

Arguments may either be positional or attached to a keyword. It is aways
legal to supply arguments attached to a keyword, but the use of position
may be restricted in any given command, usually to “common’, “obvious
arguments. Keywords, with the exception of state keywords, bind to the
argument immediately following.

For example, the following uses of the Copy command all mean the same
thing, i.e. copy filel to filet (thus overwriting it). In the examples, file | and
filet are arguments, -from and -to are keywords.

-> copy -fromfilel -to filet

-> copy filel -to filet
-> copy -fromfilel filet

-> copy filel filet

However, these are not al equally easy to read. The following example does
not mean the same, but rather the other way around:

The following are invalid:

Thus positional arguments must be given in the correct order; al arguments
may be attached to a keyword in any order. The advantage of using
keywords isthat it is not necessary to remember the order, but the
disadvantage is that more hasto be typed.

Most commands have a small number of compulsory arguments followed by
alarge number of optiona arguments. It is common practice therefore,
both in definition and use, to specify positional notation for the compulsory
argument(s) and keywords for the options, for example:

OPS Issue 1 31

Chapter 4

-> Pascal TEX -list printer:

Keywords can generally be abbreviated; the minimum abbreviation is
specified on definition, although in Panos certain conventions are employed.

Note that the "-" identifying a keyword should not be confused with that
separating a base file name from its extension.

4.3.2 Format of the Argument String

The < argument string > introduced in 4.2.1 has aformat as follows. For a
full, definitive specification, see the Panos Programmer's Reference Manual.
See also section 4.8.4.

Argument String

Thisisthe string supplied by the user after the command name. It isalist of
argument groups separated by spaces.

Argument Group

An argument string comprises one or more argument groups. An argument
group isalist of one or more arguments separated by commas and
associated with a keyword. In this publication, the term will be used to
refer to the argument group plus the keyword (if present).

Argument groups may be optional or compulsory. The former are
sometimes called options. Default values for arguments may be defined,
and are adopted if not specified by the user.

Thus an Argument group is one of ;

- alist of one or more arguments separated by commas
- akeyword plus alist of arguments
- astate keyword (see below)

32 OPS Issue |

Command Language

Argument

Thisisasingle item with one of the argument types listed in Table 4-I.

Table 4-1 Argument Types

Type Examples

string "->" "6-Oct-1985"
file name (includes devices) TEX-pas, printer:
integer 12-10,42

cardinal 10

Boolean true, false

name of STATE keyword confirm, noconfirm

A state keyword has no arguments, but has two values, essentially true if
the keyword itself isused, falseif it is prefixed with NO.

Two standard state keywords are -help and -identify (see 4.9.1).

In this Guide the term argument is sometimes used loosely to refer to an
argument group, providing no confusion will arise.

Keywords

A keyword is asingle word that identifies a particular argument group.
Alternatively, in some cases, an argument group may be identified through
its position, (see 4.3.1). If akeyword is given, the character *-' must precede
it (keyword “stropping’). The argument follows the keyword immediately,
except in the case of state keywords that are in effect their own argument.

Keywords may be abbreviated, (see 4.8.4), and are case insensitive.

OPSlssue 1 33

4.3.3 Examples of Command Lines

-> {77 -source prog -identify -opt +6
-> copy fl,f2,f3 -to vdu:
-> copy -files f1,f2,f3 -to file6 -force

Inthefirst example:

fr7 command name
-source prog -identify -opt + 6 argument string
-source prog argument group (associated with -source)

-source keyword

prog argument (file name)
-identify state keyword

-opt +6 argument group

-opt keyword

+6 argument

In the second example:

copy command hame
-from f1,f2,f3 -to vdu: argument string
-from f1,f2,f3 argument group (associated with -from)

-from keyword
fl argument (file name)
f2 argument (file name)
f3 argument (file name)
-to keyword
vdu: argument (file name)

4.4 Line Editing

During input from the terminal (on the control stream), some keys have
specia meanings that enable them to edit the line being typed. Once
|RETURN) IS pressed the command is executed. These special meanings
generally hold also during the execution of systems or user programs, but
not necessarily so, for example in the editor.

34 OPS Issue 1

Command Language

A summary of these keys and their actionsisgivenin Table4-2. A fuller
description may be found, for example, in the BBC Microcomputer User
Guide. In addition certain keys have a special meaning within Panos; these
arelisted in Table 4-3.

Table 4-2 Editing Keys

delete last character
copy character under read cursor

4
=
o -
~<| m

-

I

) move read cursor

- delete current line
RETUR newline

Tabled-3 Special Keys

-0 end of file
ESCAP generate an asynchronous event
TAB move to next tab position

Function Key bound to user defined value

Notein particular the effect of ESCAPE . In general thiswill interrupt the
current program and return to the level above, for exampleto the command
interpreter. Thusthiskey can be used to “escape’ from “incorrect'
situations.

Tab positions and function key bindings may be defined by the user by
means of the Set command.

Keysauto-repeat at arate and delay determined by the configuration file
IConfig.

4.5 Wild Symbols

Many of the commandstake one or mor e file names as arguments forming
part of an argument group, for exampleasin:

OPSlssue 1 35

Chapter 4

-> copy -from filel,file2,file3 -to BigFile

In many cases the typing will be time-consuming or unreliable. Many Patios
system programs, where appropriate, permit the use of “wild symbols' to act
as abbreviations for file names. If there were only those three files starting
with “file' in the current directory, then the above example could be
abbreviated to:

-> copy -from file* -to BigFile

Further, long and descriptive, but hard to type, single file names can be
abbreviated in thisway. For example, providing there is no ambiguity, the
following are equivalent:

-> set dir Releases.Noticel0
-> set dir Re*.N*10

In general, the system will expand awild symbol (or “wild card') into a
single file name or alist of file names. The latter case will only belegal in
certain contexts such as the first one above, but not in the second.

The full list of wild symbolsis shown in Table 4-4. Strictly speaking, the
first two apply to arbitrary strings, but in practice their use will be limited
to file names.

Table 4-4 Wild Symbols

? stands for any one character in a name.
* stands for any string of zero or more characters.
means any arbitrary pathname.

See also 2.5.5 for special symbols used in file names.

Examples are:

test-rif File name with no wildcard.

$.test-77? Three single characters (the file extension) are unspecified.

&... All objects (files or directories) which are children of this
directory (not the &' directory itself).

$.Library.* Any object inthe $.Library directory.

36 OPS Issue 1

Command Language

Examplesof useare:

-> set dir U*c
-> copy file?-* -to dfs:
-> cat adfs:$.*Lib,*-f77

4.6 Data Formats

Within the user interface of Panos, there are a number of objectsthat need
to berepresented. In particular userswill berequired in input datain a
given format. In thissection isa description of such formatsfor all objects,
or areferenceto the definition elsewherein the Guide.

4.6.1 Simple ltems

Primarily simpleitems arethe values of arguments, i.e. strings, integers,
cardinals, Booleans, and State keywor ds, see 4.3.2. Thisalso includesfile
names, see 2.5.1.

4.6.2 Time and Date For mat

Thetime and/or dateisused by a number of utilities.
Thetimeformat is:
< hours>: <minutes> : < seconds > : < centiseconds >

the seconds and centiseconds being optional. Either 24 hour clock or 12
hour (+ am/pm) may be used.

Examples

10:13:07:67
means thirteen minutes, seven and sixty-seven hundredths of a
second past ten.

10:13 pm
means 13 minutes past IOpm (or 22:13).

OPS Issue 1 37

Chapter 4

The Date format is reasonably flexible: “standard' and “textual' formats (and
permutations) plus some extensions are permitted, (seethe Panos
Programmer's Reference Manual for afull definition.

For example:
9 Nov 85 1985-11-09 9th November 1985

all mean the 9th November 1985.
Theform DD/MM/YY isnot permitted as it is ambiguous (day and month
may be interchangeable).

4.6.3VDU Characteristics

Modes

Screen Modes are represented as the cardinals 0 to 135 inclusive.

Colours

Colours, both background and foreground are represented as one of the
strings listed in Table 4-5.

Table 4-5 Colours

black
white
red

blue
green
yellow
cyan
magenta

or one of the above prefixed by “flashing-'.

38 OPS Issue 1

Command Language

Paged Mode

Paged Mode is represented by the Boolean true for paging, false for
scrolling.

4.7 Built-in Commands

Command lines beginning with a"." (after leading spaces have been
removed) introduce commands which are built into the Command
Interpreter. These are “primitive' commands in that they carry out low level
or specialised tasks. They do not include provision for wild symbol
expansion or use of search paths. In practice they are for the programmer
(e.g. in command files); they need never be employed by the end-user.

The commands are shown in Table 4-6.

Table 4-6 Built-ln Commands

. <SPACE>
If the character after the . is aspace, therest of the line isignored.
Thisisuseful for commenting command files.

.Delete < variable-name >
Removes the global string from the environment.

Help
Provide help information on the built-in commands.

Kkey
See command files, section 4.8.4.

.NewCommand
Causes the Command Interpreter to use the value of CLI$Path to
determine the future set of known commands. This must therefore be
quoted after altering the CLI$Path, see 4.2.2.

.Obey < command file name > < arguments >
Execute the named command file with the given arguments. This
ignores the search path, i.e. afull path name must be given. This
could be used, for example, to execute $.!Panos.

OPS Issue 1 39

Chapter 4

pwd
Prints the current working directory.

.Quit
L eave Panos.

.Run < file name > < arguments >
Run the relocatable image in the named file passing it the given
arguments. This ignores the search paths, i.e. afull path name must be
given.

.Set < variable-name > < value >

Set the global string variable to the given value. A null value ™" will
cause the variable to be deleted from the environment.

.swd < path >
Sets the current working directory, see section 2.5.5.

wait
This command causes the command interpreter to wait until reTurn
is pressed before continuing. The main application is within command
fileswhich interact with the user; the “install' command files which
install Panos onto the DFS employ this mechanism.

Examples

. coment
obey adfs:$.!Panos

swd dfs::1

->
>

-> run nfs:$. stanp-rif
>

> set cli$stop -1

.set cli$path, newcommand and swd are often used together, for example
after these commands,

-> set clig$path dfs::0
-> newcommand
-> swd dfs::l.

the command:
-> cat data-dat

is equivalent to typing:

40 OPSIssue 1

Command Language

-> dfs::0.cat-rif dfs::1.data-dat

4.8 Command Files

Command files permit the user to store commonly occurring sequences of
commandsin afile and execute that sequence by issuing a single command.
In thisway the actual command sequence can be hidden to promote ease or
convenience of use. Panos command files support command sequences,
parameter passing and procedural calls (i.e. they may be nested).

The "use' of acommand file is no different from using any other command;
indeed thisis aprimary objective. This chapter is concerned more with the
definition’ or writing of such files. Writing command filesis a practical
proposition for end-users as well as programmers, although there are
complexities to be overcome in the more sophisticated examples.

Organisation of this Section

In sub-section 4.8.1 the fundamental s of writing command files are
presented along with some simple examples. Writing more complex
command seguences involving the definition of argumentsis more difficult
and forms the subject matter of the remainder of this section.

4.8.1 Basic Facilities

If the name of a command typed in response to the Panos prompt is not a
built-in command, it is assumed to reside in afile somewhere on the filing
system.

If the file contains commands (indicated by the first character being a $
character) the commands are read and executed, and the fileissaid to bea
command file. Command files should have the extension "-cmd' appended to
the base file name.

Commands contained in a command file may be built-in commands,
executable programs, or calls to further command files. Each linein a
command file must start with $, and may be followed by any number
(including zero) of spaces.

OPS Issue 1 41

Chapter 4

The use of help has a different interpretation in command files from that
documented in 4.7, (see 4.8.4).

If the global variable cli$echo is set to “true' the command lines will be
,echoed' on the screen asthey are obeyed.

Termination Conditions

A command file is obeyed until some termination condition occurs. The
first and simplest case is that the command sequence is completed.

Secondly, auser may terminate the execution by pressingthe scap key.
In the case of nested command files, the use of escape during execution of
a command terminates that command and returns control to the level

above.

Thirdly, under certain conditions, an “error' during the execution of a
program forming a command sequence will terminate that sequence. The
mechanism is that each program returns a result code which is assigned to
the global variable CLI$ResultCode. If the value of thisis more negative
than the value of the global variable CL1$Stop then the command sequence
will be terminated. If not, then the next command in sequence will be
obeyed. The default value of CLI$Stop is-64, i.e. stop on errors, but not on
warnings.

See also Chapter 5.
Simple Examples
The examples demonstrate simple uses of command files, the first to set up

apersonal environment, the second to configure the system for an
application.

$ ldentify !Mark 21st August 1985

$ Set Alias$ls "Cat al ogue -full -header"

$ Set Alias$ed "edit -buffer 200000"

$ Set Alias$ty "copy -to vdu: -fronf

$ Set Alias$pr "copy -to printer: -fronf

$ set Alias$li "l'isp -imge $.PanoslLib. Li spi mage -identify"
$ Set PrograntVerbosity 99

$ Show var sys$*

42 OPS |ssue 1

Command Language

$ Identify ADFS !GCaL Version 1.00/01

$ Help Initialises GCAL on ADFS

$ set gcal$Lib adfs:$.GCallLib
$ Set Cli$Path adfs:$.PanosLib, adfs:&.$.GCal.Lib,
$ NewCommand

$ set File$-gcal _gcal.-

$ set File$-gout -gout.-

$ set File$-glib _glib.-

$ set Files-dfl _gfl.-

$ set Filesdfs:-gcal u.-

$ set File$dfs:-gout V.-

$ set Filesdfs:-glib g.-

$ set Filesdfs:-gfl u.-

4 8.2 Parameters with Command Files

The above simple examplesillustrate the use of command files without
arguments. To be more useful it is necessary to have mechanisms by which:

(a) the user can supply an argument string with the name of a command
file

(b) alegal format for that string can be defined by the author of the
command file

(c) the system can decode the argument string and check it for legality,
(with the same rules as in programs)

(d) the values of arguments can be passed onto the individual commands
that make up the command file and used as arguments to them

In this section an illustration of the above mechanismsis given. The
exampleisasimplified version of the f77 (FORTRAN 77 compiler)
command which hides from the user the need to call two separate programs
in sequence. These are the front-end (f77f€) and the code generator (f77cg).

$ Identify Fortran Command file 1.10/01

$ key source/e-f77 list/s opt/k[+]

$ Help

$ Help -Source Source file

$ Help -List Enable listing

$ Help -Opt Compilation options
$ Help

OPS Issue 1 43

Chapter 4

$ set CLI$Stop-64
$ f77fe <source> <List> -opt <opt>
$ f77cg <source> -Opt <opt>

The following are sample uses of the above command file definition:

-> f77 Spice
-> f77 Spice -list

Thisworks as follows:

The user types a command with its associated argument string in the usual
way (a).
Thelines ".help' and ".identify' simply provide the user with information.

Theline " key..."is an example of akeystring. This defines the argument
string format (b). It specifies that there should be three argument groups,
source, list and opt. Thefirst isafile name (/e), the second is a state
keyword (/s), and the third is a string, but must be supplied with a keyword
(/).

The command interpreter checks the actual argument string against this
definition (c).

The actual arguments supplied by the user are substituted for the place
markers shown in angle brackets, (see (d)). For example the argument
associated with the keyword -source is substituted for < source > .

Therefore the three examples of use trandlate into:

f77 Spice
-> f77fe Spice-f77 -opt +
-> f77cg Spice-f77 -opt +

f77 Spice -List
-> f77fe Spice-f77 -List -opt +
-> f77cg Spice-f77 -opt +

f77 -source Spice -List -opt +tWO

44 OPS |ssue |

Command Language

4.8.3 Parameter Substitution

Asoutlined in 4.2.4, the Command Interpreter performs parameter
substitution on al lines. Thisis carried out on all argument strings but
before the arguments are decoded by the program or command file.

Its main significance isin command files, although it is of wider
applicability. See the Panos Programmer's Reference Manual, Chapter 3 for
full details.

Parameter substitution enables actual argument values supplied on the
command line by the user to be substituted for formal valueswithin a

command file. In addition global values (from global variables) may be
substituted.

The following rules are applied:

aparameter isaword enclosed in < > brackets. Leading and trailing
spaces are stripped.

if in acommand file then the parameter word isfirst looked for in
the decoded arguments derived from the'. Key String', (see 4.8.4). If
thereis afirst line beginning with ".key', then a string representation
of the argument is substituted for the parameter in the line.

the parameter word islooked for in the global environment strings. If
found its value is substituted.

if no substitution has occurred then an error is generated.

4.8.4 Argument Decoding and the Keystring

It is possible to include argument decoding in command files, similar to that
provided by the Panos run-time library. An abbreviated account is givenin
this section; for full details, refer to the Panos Programmer's Reference

Manual). To make use of thisfacility.key must be included asthe FIRST
line of the file (comment lines are not excluded from thisrule). For

example, see 4.8.l.

The keystring describes the arguments which the program expects. This
processisillustrated in figure 1.

OPS Issue 1 45

Chapter 4

keystring, cg ‘source/a/e~f77 aof/k’

Decodelmt —> Dccoded arguments

eg ‘myprog-f77°

V

Command line, eg ‘f77 myprog’

Figure 1 Argument Decoding

The Keystring

A keystring is a sequence of keywords, (separated by spaces or commas)
which are qualified by control characters called option specifiers (e.g. /k
and /e in the example of 4.8.1). These determine the type of keyword, and
the number and type of arguments that may be associated with it.

Also associated with each keyword is an optional default argument list. This
isused if the user does not supply any arguments on the command line for
that keyword. The case of the keyword determines the minimum
abbreviation. Upper case specifies compulsory characters. Thus NAmeis
matched by NAME, NAM, NA, but not N.

Option Specifiers
There are three classes of option specifier:

1) Quantity option

Thisis used to indicate the number of arguments which may be associated
with the keyword. There are three formats:

46 OPS Issue 1

[< number >

/ _ < number >

1?

Command Language

This specifies that at most < number > arguments
may be associated with the keyword.

This specifies that exactly < number > arguments
must be supplied for the keyword.

This specifies that any number of arguments can be
supplied.

If no quantity option is supplied then /I is assumed, i.e. keywords are
expected to have one argument by default.

Some examples are:
Keystring
INPUT/3

INPUT/=3
INPUT/?

INPUT

2) Type option

argument groups matching

-input X,y,z
-INPUT x
-input

-input X,y,z

-input w,x,y,z
-Input

-input x

This option indicates what type of arguments are expected to be associated
with a given keyword. Possibilities are:

/1
/IC
/B

[E[-ext]

Integer. Thisindicates that integer arguments will be
used with the keyword.

Cardinal. Thisindicates that cardinal (positive integer)
arguments will be used with the keyword.

Boolean. Thisindicates that two argument values are
possible: TRUE or FALSE.

Extant. This means that the keyword's arguments are
expected to be filesresiding on the filing system. A
check is made that the names provided exist. In
addition, an optional extension may be given whichis
automatically appended to file names which do not
have an extension already.

OPSIssue 1 47

Chapter 4

/R Rest of argument string. The value will be the string
made up of all the charactersto the end of the
argument line with no further interpretation.

/L Literal string; that is the string made up of all the
characters up to the next explicit keyword with
leading and trailing spaces removed.

If no type option is supplied then the keyword isinterpreted as a plain

string.
Some examples are:

Type Keystring

argument groups matching

Integer POSITION/I -position 128

-position 16_1A
-position -3024

Cardinal LENGTH/C -length 128

-length 16-1A

Extant file -SOURCE/e-f77 -source prog (valueis prog-f77)

SOURCFE/e

3) Keyword Presence

-source prog-f77 (value is prog-f77)
prog (valueis prog-f77)

-source prog (value is prog)

-source prog-f77 (valueis prog-f77)

There are two options to control the “parsing’ of the key string, compulsory
argument, and compulsory keyword, plus three to control the detection of

keyword names.

Compulsory /A
Argument

Compulsory /K
Keyword

Presence /P

48

This implies the keyword must have at
least one argument (although the
keyword itself need not occur).

The keyword cannot be used with a
default argument list, (see below).

This means that the keyword can only
have arguments if the keyword itself
isalso given.

Trueif the keyword is present, false otherwise.

OPS Issuel

Command Language

Non-Presence /N Permits NO to be pre-fixed to /P options.

State /S Thisindicates a state keyword. These
don't have arguments supplied by the user,
but are interpreted as TRUE if cited in
the command line and FAL SE otherwise.
Such arguments can take neither
default arguments, quantity options,
nor the /A option.

Equivalent to /K/P/N/ =0

Examples:
OBJECT/ale-aof -object x
-object x-aof
X
x-aof
LIST/k -list 1file
but NOT Ifile
LIST/s -list valueis TRUE
-nolist or < blank > value is FALSE
Default Values

A valuein square brackets [' and ']' in akeystring is interpreted as a default
value, i.e. isused if the user does not provide any.

Example:

FILES/?[f1,f2,3] -files oneF, twoF value is oneF,twoF
files valueisf1,f2,f3
(blank) vaueisfl, f2,f3

/S keywords have implicit default arguments.
/A keywords cannot have default arguments.

OPSIssue 1 49

Chapter 4

Assignment of arguments to keywords

This sub-section describes how the user-supplied arguments are interpreted
using the programmer-supplied keystring. A more detailed description is
given in the Panos Programmer’s Reference Manual.

Therulesfor interpretation are:

a) Argument groups qualified by the keyword name can be supplied in
any order.

b) Argument groups not qualified by the keyword name are assigned
(essentially as valuesto keywords) from left to right.

Note that, in this process, /K (compulsory keyword) and /S (state)
keywords in the keystring are ignored.

C) The character'-" must be immediately followed by a keyword name.

d) If the user does not supply avalue, and a default value is present in
the keystring then that default value is assigned to the keystring.

) The keyword names -help and -identify are special, in that the
program will always respond to them, even if the rest of the
command line does not make sense. This alows usersto type, for
example, f 77 -He | p and receive some help information. It is not
necessary to specify these keywords explicitly in keystrings.

4.9 Standard Conventions

This section describes the conventions adopted by all supplied programs for
argument strings. Users and software developers are free to adopt whatever
conventions they wish but are encouraged to adopt those described here.

There are many arguments that the systems programs have in common. To
avoid duplication in the individual descriptions, these standard arguments
are described here.

Square brackets indicate that the keyword is optional (i.e. positional
notation may be used). Upper case signifies minimum abbreviation.

50 OPS Issue 1

Command Language

Many of the options are state keywords, i.e. are true if the keyword is given,
or falseif the prefix NO isfollowed by the keyword, for example -Confirm
istrue, -NoConfirm isfalse. The action is carried out if the result istrue.

If the state keyword is not given, then the default value is used. The default
value is false unless otherwise stated, but see 4.9.3.

In 4.9.] certain standardly interpreted (but not necessarily universal)
arguments are listed. In 4.9.2 the usage of such argumentsin certain classes
of system program is described.

4.9.1 Standard Arguments

[-Help]
Typing -Help on the command line will make the program print a
summary of its arguments, and examples of their use. If this argument
is given, the program itself is not executed.

[-IDentify]
Issuing this option prints the full path-name of the program, followed
by its version number. The program is executed.

[-ERRor] name
"Errors may be generated in avariety of ways, for example, afile name
may be misspelt. The error messages (and any verbose information
generated by the program) are sent to a Panos stream called “error:’,
(see 2.2). Usudlly, this stream is associated with the screen. However,
errors can be redirected to other files or devices by following the
keyword -error with aname, e.g. -error printer:

[-CONTrol] name
Thisissimilar to -error but is used to redirect input from the currently
selected control stream to another stream, (see 2.2). Any program
which issues prompts reads the reply from the control stream. Usually,

this stream is associated with the keyboard ("kb:"). Prompts are written
to the output stream associated with the control stream, or the screen

if thereis no associated stream.

[-Verbosity/Verbose]
Feedback arising from actions performed by the program e.g.
deletions, file creations, copying etc. is given on the error stream if
-Verbosity is present or the value of global variable Program$Verbosity

OPS Issue 1 51

http://etc.is
http://etc.is

Chapter 4

is greater than 0. Only one-line error messages (usually from the
system) are sent if the verbosity level is zero. The higher the level of
verbosity, then the more unimportant operations are reported. The
default valueis 3.

[-Confirm]
If -Confirm is present or Program$Confirm is set to "True' then
confirmation of the action about to be taken by the program (and any
unforced deletion necessary to perform that action) will be required.
The default setting for this argument is “noconfirm' except in the delete
utility, but see 4.9.3.

[-Force]
If *-Force' is present or Program$Force is set to "True' then any locked
files will be unlocked. The "-Force' keyword must be specified to
overwrite existing files. Compare this with “-Confirm', which will
overwrite existing files, but will request confirmation before doing so,
but see 4.9.3.

[-Abandon]
If "-Abandon' is present or Program$Abandon is set “True' then the
program will be exited if any error is detected, otherwise it will
continue until afatal error occurs, but see 4.9.3. Thisis of particular
use in command files. See also 5.4.

[-INput]
If input to the program is read from the input stream, input: (see 2.2),
then use of this option enables it to be redirected so that it is read from
the specified device or file. By default input: is the keyboard.

[-FROM]
A synonym (alias) for -input

[-OUTput]
If output from the program is sent to the output stream, output: (see
2.2), then use of this option enablesit to be redirected so that it
appears on the specified device or file. By default output: is the screen.

[-TO]
A synonym (alias) for -output

52 OPS Issue 1

Command Language

4.9.2 Usage of Standard Arguments

All Programs

All programs use the following (see 4.9.1):

-help
-identify

They are interpreted in a specia way by the argument decoder so it is not
necessary to specify them in akeystring.

Utilities

In this context, utility program means those described in Chapter 6. Most of
these utilities use the following (see 4.9.1):

-help
-identify
-error
-control
-verbosity
-confirm
-force
-abandon

Language Compilers

For details of the action of each compiler, see the relevant language
reference manual. BBC Basic is an exception since it does not use Panos.
All compilers use the following (see 4.9.1):

-help
-identify
-error

In addition, most compilers use the following:

OPS Issue 1 53

Chapter 4

-source for the source text
-aof for the object module
-list for the source listing

Compilersfollow aset of rulesfor processing the file extensions:

l. If an extension is given in the keystring then it will be appended to
thefile name if the user supplies no extension.

2. The value of the argument is the file name with the extension added.

The compiler is expected to generate names for other files required from the
source file name with its extension removed.

For example, using the f77 compiler:
The extension used for sourcefilesis *-f77"
-> f77 nyprog

This command compiles the FORTRAN source in myprog-f77 and places
the object output in myprog-aof.

-> f77 nyprog-txt -list
Compile the FORTRAN source in myprog-txt place the object output in
myprog-aof and the listing in myprog-lis.

-> f77 nyprog -aof tenp -list printer:

Compile the FORTRAN source in myprog-f77 place the object output in
temp and send the listing to the printer.

4.9.3 Global Control

The utility programs all take a number of options as described in 4.9.1.
Many options have default values. For example, overwriting afile will by
default require confirmation. This may not be to the user's taste.

These default values may be changed by the user through the use of
PROGRAMS... global variables, (see 2.7). Thisfacility enables users, either
temporarily or permanently, to customise the globa behaviour of the
system. In the example above, the default may be changed to no
confirmation for all programsthus:

54 OPS Issue 1

Command Language

-> set var PROGRAMS$Confirm FALSE

This mechanism governs global behaviour. Local behaviour within asingle
invocation of a command can of course be defined by means of the option.
For example, the use of feedback may be governed for all programs by
setting the value of PROGRAMS$V erbosity, or for a single program through
the -Verbosity option when issuing the command. The latter always takes
precedence over the former.

The PROGRAM$ variables are listed in Table 4-7.

Table 4-7 PROGRAMS$ Variables

PROGRAMS$ Verbosity Cardina
PROGRAMS$Help Boolean
PROGRAMS$Identify Boolean
PROGRAMS$Force Boolean
PROGRAMS$Confirm Boolean
PROGRAMS$Abandon Boolean

OPS Issue 1 55

5 Feedback and Errors

5.1 Introduction

Context

Feedback is given to the user for a number of reasons, usually to provide
information on the state of the actions being carried out. A particular form
of feedback is notification of errors. Often, an error condition will
terminate the current action.

Error handling forms the topic of Chapter 2 of the Panos Programmer :s
Reference Manual.

Organisation of this Chapter

In this chapter, the different waysin which errors are reported forms the
topic of thefirst section. Thisisfollowed by a description of the waysin
which feedback may be given. Then comes a summary of the ways in which
the user may control the effects of errors and perhaps recover from them.
Finally, thereisasummary of the help facilities.

5.2 Error Messages

In this context, an error is taken to be a condition that ordinarily resultsin
the termination of a system or user program. Generally these are the “fault’
of the user of the program.

The system reports different classes of user error in anumber of different
ways.

In some cases the “error' is considered as no error at all, perhapsit isthe
null case. No error message is given. For example:

OPS Issue 1 57

Chapter 5

-> show var NoVar

In other casesthe running program will detect theerror, for example, a
filename may have been mistyped:

-> copy NoNane -to vdu:
Error in copy : failed to find ' NoNang'

In further casesthe error may be detected and reported by alibrary
procedure called by the running program. In such a case a message is given
preceded by three + signs. The Panos library module responsibleidentifies
itself but this is unlikely to be of interest to the typical user. For example:

-> set var sys$time xxx
+++ Can't set 'sys$tine' - reserved variable
+++ Detected by nmodul e GLobalLString

-> copy -NotKey NoName -to vdu:
+++ Keyword ' <Not Key>' not known
+++ Detected by nodul e Paraneter

Compiletime and run time error messages from user programs under
development are described at length in therelevant language reference
manuals.

A full list of Panos error messagesisgiven in Appendix A of the Panos
Programmer's Reference Manual

5.3 Feedback

Error messages are a particular form of feedback. Other forms of feedback
include warnings, or simply the commentary given showing progress with
or completion of an action. Although this commentary can be of value,
especially to inexperienced users, it can betedious. Thereforein Panosthe
user has some control over its “verbosity'.

The command option -Verbosity and the global variable Program$Verbosity
(see 4.9.3) are conventionally used to govern whether the program provides
acommentary through strictly unnecessary but reassuring feedback. The
level of warning and error message reporting may also be set in thisway.

58 OPS Issue 1

Feedback and Errors

5.4 Error Control

There are anumber of ways in which users can control the way in which
errors are processed. Mostly, these are documented elsewhere, but
referenced here.

Abandon

-abandon and PROGRAM$Abandon (see 4.9.1) are used by the utilities to
determine whether a single error condition should terminate the invocation
of the command. For example, if alist of fileswere to be copied, should the
remainder be copied if one does not exist. The result code (see below) will

be set accordingly.

Command File Termination
The global variable CLI$Stop (see 4.8.1) is used to determine whether a

command file should terminate following an “error' in one of the sequence
of commands.

Verbosity

-verbosity (and PROGRAMS$Verbosity) (see 4.9.1) control the level of
warnings and other feedback given.

Program Results

The global variable CLI$ResultCode conventionally takes on one of the
following values on completion of a program:

+ve available for users
0to-63 warnings
-64 or less errors

Command files are terminated if this value is more negative than the value
of CLI$Stop.

OPS Issue 1 59

Chapter 5

Event Handling

Both asynchronous and synchronous events (e.g. errors) can be trapped by
the user program and suitable action taken. For details see 2.6 or the Panos
Programmer's Reference Manual.

ESCAPE

Pressing the Escape key isan asynchronous event. Conventionally it
returns control to the calling program.

5.5 Help Information

On-line help information is provided in a number of ways.

Help Command
The Help command describes the usage of the program given asits
argument. For example, to gain help on the use of the linker, type:

-> Help linker

Typing Help without an argument lists all the system programs (for
which individual help exists).

Help Option
Exactly the same message as above can aternatively be obtained by
use of the -help option (see 4.9.1). For example:

-> Linker -help
Note that standards exist for the form of such help messages.

Built-In Help
For help on built-in commands type help (see 4.7).

Editor Help
The editor has a special help system, see 7.6.1.

60 OPS Issue |

6 Utilities

6.1 Introduction

Context

Panos relies upon utilities to perform most tasks. This approach has the

advantage that Panos can be enhanced simply by writing new utilities to
perform a particular function.

The utilities provided as standard with the system are described in this
chapter with the exception of the editor and linker which are in Chapters 7
and 8 respectively.

Thereisalso asmall set of built-in commands which can perform some of
the same tasks as the utilities; these have specialised uses, and are
documented in section 4.7.

Conventionsin this Chapter

A list of argument (group)sis given for each utility. All keywords are
optional (and therefore enclosed in square brackets); however, the
arguments which they refer to may not be optional, e.g. the logon utility
does not require the keyword "-as' to be stated, but logging on details must
be specified.

Each utility hasits default settings for state keywords. For example, the
delete utility has “-confirm' set by default, although in othersit is
“-noconfirm'.

The options listed in 4.9. are available for aimost all the utilitiesin this
chapter, and are therefore not described further.

Demonstration

A selection of the utilitiesis shown in figure 2.

OPS Issue 1 61

Chapter 6

=} Copy Copglest

“e Ms i3 2 smill text file whick is being copied te the sorees, so¢
ot The wgwamat ‘~te winy’ is the defanlt, and so seedn’t be sepplind,
tuntui copled to utputiCopytest (143 bytes)

-} tln ~fran twetest copytest -te éfs::3.beth

Ereer in Copy : destinatisn file alreay exists ‘dis:i3.beth’
=¥

=3 Copy ~fram taatest,coputest -te dis::3.beth -force
twbest oopivd b dfs::3.Cou-tap (206 bgtes)

coputest appended to dfs::3. Loyt (143 Mytes)

=}

=} Rename twet ~as olds -Loudirn
Renane ‘tustest’? (WA : y

tustest resaned as olitest

-3

<} Create Mifiles dir

dirostory ‘Bl1files’ created

-}

=3 Bocass M jiiles reiry

ngmzm attridetes st be roir—--

~} shos oty
!:gn 815515

Figure2 Utilities Demonstration

Organisation of this Chapter
Each utility issimply listed in turn, in alphabetical order.

There are no specia sections on command language, feedback and so on
since the standards described in earlier chapters apply. The utilities are
installed and configured as part of Panos, see Chapter 3.

6? Op(g Ts411P1

Utilities

6.2 Access Command

This utility allows the user to change the access permissions of alist of one
or morefiles.

Concepts

See2.54.

General Form

-> access arguments

Arguments

[-FILES] file names
Thelist of filesto be affected is optionally preceded by the -FILES
keyword. Wildcards may be used.

[-ATTRIibutes] attributes
The attributes (permissions) are optionally preceded by the
-ATTRibutes keyword. They depend on the physical filing system and
take the same format - (see the relevant filing system user guide) The
utility will not enable the "E' attribute to be set on the ADFS and will
not affect files which have this set.

[-BEFORE] date
Only the filesin the -FILEs list with no datestamps or datestamps
before the given date will be copied. Dates can be given in most
unambiguous formats, and optionally include atime, e.g. Thursday
20th June 84 8:30am. See 4.6.2 for a definition of the format. Note that
‘Today' isavalid date. If no time is specified then the start of the day
istaken.

[-AFTER] date
See -BEFORE (substituting after for before).

The standard arguments for utilities are also available, see 4.9. t-2.

OPSlssue 1 63

Chapter 6

Examples

-> access Dave-pas rwr

-> access * rw'r
-> access -files fred,jimsheila -attributes rl/ -after 10th-nar-81

-> access -file jamw

64 OPS Issuel

Wilities

6.3 Catalogue Command

This utility obtains information about files. The amount of information
printed can be varied from asimple list of file names, to complete
pathnames with the associated file information (access permissions, file
creation date etc). This utility is shortened (aliased) to “cat' in the !Panos
start-up files provided with the system.

The exact form of the information depends on the filing system.
See figure 3 for a demonstration.

Concepts
See 25.

Genera Form

-> Cat al ogue argunents

-> Cat argunents

Thefirst formisfor the ADFS and NFS only.

Arguments

[-FILES] file names
A list of zero or more files or directoriesto catalogue. The normal file
name conventions apply (i.e. wildcards may be used etc.)

[-Depth] n
Controls the depth of nesting of the listing. The keyword is followed
by a number n which gives the maximum level to which directory
contents are expanded in the filing system hierarchy. A value of zero
gives no expansion. The default is one.

[-FULL]
Givesfile attributes in addition to the name. Thisinformation includes
access permissions, date of creation, and whether the file isa directory.

OPS |ssue 1 65

Chapter 6

[-Header]
Causes the pathname of the directory to be printed just before the list
of filesit contains.

[-COLumnsg| n
Forces the output into n columns. By default the number of columnsis
chosen according to the longest name to be output. This option has no
effect if -full has been specified.

[-BYName]
Sorts the output into strict alphabetical (ASCII) order.

[-BYDate]
Sorts the output into chronological datestamp order. Unstamped files
are considered to be the most recent, and are sorted alphabetically.

[-Reverse]
Thisreverses the order of output, after any sorting option has been
considered.

[-TO] name
See4.9..

The standard arguments for utilities are also available, see 4.9.1-2.

Examples

-> cat

->cat lib

-> cat

->cat *-f77 -to printer:

-> catal ogue $...

-> cat *-f77, *-aof

-> cat |ib??? -bydate -depth 2 -full

The 1 st example lists the current directory.

The 2nd example lists a directory called lib (in the current directory).
The 3rd example lists all objects (files and directories).

The 4th example lists all Fortran files on the printer.

66 OPS |ssue 1

Wilities

Functi ons

By default, output is ordered in the natural order of expansion. That is,
directory contents are listed alphabetically, and any listing of subdirectory
contents occurs recursively at the end of the parent directory.

The -FILEs argument is an optional list of filesto be listed. Aswith all
file-type' argument groups, the names are separated by commas, and can
include wildcards. If afile name isadirectory, its contents are listed, rather
than the name of the directory (but see -Depth).

The 1st example differs from the 3rd in that any sub-directories listed by the
3rd will have their contents listed, not their names. For example, suppose
that, on the ADFS, the current directory (whichiis, for instance, the

start-up directory “&") contains two files, linkfile and libdir, of which libdir
isadirectory containing the two files Tred' and “petunia. Catalogue on its
own will list:

libdir linkfile
The command “cat *'will list:

linkfile
Directory: 'ADFSA. libdir.fred Date: 07 May 87 10: 00: 07
Directory: 'ADFSA. libdir.petunia Date: 07 May 87 10: 00: 07

Note that the non-directory filesin the list are given first, followed by the
contents of any directories.

The option -Depth is used to prevent (or enable) directories contents being
listed. As mentioned above, if agiven file name argument isasimplefile,
catalogue lists that name. If it is adirectory, the contents of that directory
arelisted instead of its name. The -Depth option controls the depth to
which directories are listed.

To prevent directories from being expanded into their contents, use
-Depth 0. Using the structure above, typing

OPS Issue 1 67

Chapter 6

-> catalogue * -d O
will prevent lib from being expanded and will display:
libdir linkfile

The numeric argument after -Depth specifies how deep into the hierarchy
catalogue should look. The default is-Depth |, which causes it to list
directories one level down from the argument directory. Greater values
cause it to look further down the structure. Taken to the extreme, this can
be used to list the whole structure of the disc, for example:

-> catalogue $ -Depth 99

will list files down to level 99 (in practice, ten is above the limit that people
will use) starting from the root, $.

-3 oat
swrat=-aof wrat-asn aerat-lis MlIFiles cerat-c ocerat-lis cerat-tw
t:n!ﬂt forat=f77 ferat-lis oldtest perat-lis perat-pas

-} eat o-lis -Hull

16,779 otes aerat-lis
2,830 butes corat-lis
1,23 tes ferat-lis
l:m i!t!s m‘t'lis

awrat-rif cerat-rit cleck-rif ferst-rif fowrier-rif perat-rif
-3

-} cat -heater -bydate -colums ¢

Birectary: “MFS::0.S.0amsdene.prous’ Date: 16 ey 5 15:1%:42

perat-pas ferat-77 cerat-¢ arat-asa
perat-lis ferat-lis awrst-ad amrat-lis
cerat-tw eerat-lis Copylast aldtest
fiiFiles

-3 sl 8112

=} oot -reverse
perstorif fowrior-rif ferat-rit closh-rif oerat-eift mesk-rif
«} .

Figure 3 A Detuoustratiou of Catalogue

The -Header argument causes catalogue to print the names of directories
before their contents. For example, typing

68 OPS Issue 1

-> cat al ogue - header
with the example file structure would give:

Directory: 'adfs:& Date: 02-feb-87 15:47:56
libdir linkfile

OPS Issue 1

Uilities

69

Chapter 6

6.4 Configure Command

This utility allows the user to set up configuration options, i.e. ater the
value of !Config.

Concepts

See3.3.3.

General Form

-> Configure argunents
-> Config argunents

The latter formisfor DFS, the former for ADFS or NFS.

Arguments

[-New]
If this optional parameter is specified, anew !Config fileis created in
the current directory. An error message is therefore not given if there
isno !Config file already in existence.

The standard arguments for utilities have no function.
Examples

-> configure

-> configure -new
Command Language

The utility consists of two modifiable screen pages, the second page
containing attributes which should be altered with care.

A special command language is used with this utility. t and | are used to
select anew item. Use - or i to select anew value for that item.

70 OPS | ssue |

Utilities

Help information about the modifiable characteristicsis accessible on-line,
and visible at the top of the screen. To move from page 1 to page 2, press

SHIFT - ®, i.e. whilst holding SHIFT, press ¢+ (CU to get back to page
2).

Functions

If the IConfig file is updated then the old file is renamed as ! OldCon; thisis
as a safeguard in case the updated ! Config file has been altered erroneously
(for example, the auto-repeat rate may have been set too high), making it
very difficult to re-create ! Config.

When “Configure' is used, the file !|Config is overwritten. The utility looks
for an old version to update, searching (in this order) in the current
directory, the start-up directory “&', and the root directory °$'. If no ! Config
isfound, an error is given.

OPS Issue 1 71

Chapter 6

6.5 Copy Command

This utility takes a source list of one or more files, directories, and/or
devices, and copies them to a destination, either afile or a directory.

Concepts

See 2.5.

Genera Form

-> Copy arguments

Arguments

[-FROM] name
The -FROM keyword may optionally precede the list of objectsto be
copied. See 4.9.I.

[-TO] name
This optional keyword is followed by the destination file name,
directory name or device name. The default is to output: (usually
vdu:). See 4.9.l.

[-Delete]
If this switch is specified then the source file will be deleted after the
copy has taken place (in effect renaming across filing systems).

[-CONTENTS]
If the source list contains a directory then the directory contents will
only be copied if -CONTENTS s specified.

[-Exact]
Usually the file created by “copy' is datestamped with the current date.
If thisflag is specified, the datestamp information from the source file
is used instead. When concatenating, the datestamp of thefirst filein
the source list is used. This option is also used when copying
non-Panos files, i.e. when the “date stamp' is actually aload/execution
address. See also 2.5.3.

72 OPS Issue 1

Uilities

[-AFTER] date
This argument takes a time and date string which when specified,
means that only files with alater datestamp will be copied. Thisis
useful for only backing up recently changed files. Note: this appliesto
files with datestamps, those without will be copied regardless. See 4.6.2
for the date format.

[-BEFORE] date
See -AFTER (substituting before for after).

The standard arguments for utilities are also available, see 4.9.1-2.

Exanpl es
-> Copy Filet -to Filet
-> Copy $.0dDir.Filel -to $. NewDi r
-> Copy Filet
-> Copy dfs:Filel -to @
-> Copy dfs::O Filel nfs:
-> copy -fromkb: -to newfile
-> copy -fromadfs:thisdir -to nfs:thatdir

'
Vv

copy *-cmd -verbosity 3
copy *-rif -to old*-rif -after 15th August 1984 7:30 am

'
Vv

Copy dfs::2.*-pas -to nfs:& newfiles -after today
copy * to adfs:newdir -confirm

copy kb:first,kb:second -to adir -force

copy AnExecFile -to dfs::0 -exact

' ' ' '
v Vv Vv Vv

Functi ons

The action taken depends on the contents of the source and destination lists.
If no destination is specified then the source is copied to the currently
selected output stream which is usually (and by default) the screen, (3rd
example).

The most typical use of this utility is moving files between filing systems, or
from one location to another within adirectory structure.

If the destination is not an existing directory, then the source files are
concatenated into it, e.g. asin:

OPS Issue 1 73

Chapter 6

-> Copy -fromFilel File2 -to & Bothfiles

Beware when copying the entire contents of a directory into one other
object: if thisisnot an existing directory, then avery large single file will be
created. For example,

-> Copy Direct.* -to NotaDir
will concatenate all filesin directory "Direct' to one file "NotaDir'.

The -CONTENTS keyword causes the directory's entire tree structure (if
the source is a directory), to be copied to the destination directory or device
retaining the same structure and names.

If both the source and destination are wildcarded, then matched
wild-carded partsin the source list are substituted for the corresponding
wild-carded partsin the destination. Thisfacility can be used for backing up
certain files, e.q.

-> copy *-rif -to old*-rif

74 OPS Issue |

Wilities

6.6 Create Command

This utility allows the user to create directories (or files). It may be viewed
asa Copy' utility which doesn't take any source files. It creates alist of new
filesor directories, optionally of agiven length. Its primary useisto create
new directories on a hierarchical filing system.

Concepts

See 2.5.

General Form

-> Create argunents

Arguments
[-FILES] file names
Thisisthelist of file(s) to be created.

[-Dir]
If this argument is quoted the file created will be a directory.

[-Sizeg] n
Thisis the sizein bytes with which a (non-directory) file should be
created. The default is zero bytes, i.e. anull file.

The standard arguments for utilities are also available, see 4.9.1-2.

Examples
-> create neudir -dir

-> create sone, nany -verbose 1
-> create text -size 64

OPS Issue 1 75

Chapter 6

Functions

If -Forceis set then any part of the path name which does not exist will be
created.

76 OPS Issue |

Utilities

6.7 Delete Command

Thisutility enablesthe user to delete one or morefilesor directories.

Concepts

See 2.5.

Gelieral Forin

-> Delete arguments

Arguments

[-FILES] file names
Thisisalist of one or morefile names. Asusual, wildcards may be
used in place of an explicit list. Directories may only be deleted if they
are empty.

[-BEFORE] date
Deletethefile only if its datestamp is before the date and time
specified (or if it does not have a valid datestamp). See 4.6.2 for details
of the date format.

[-AFTER] date
Deletethefile only if its datestamp is after the date and time specified

(or if it does not have a valid datestamp). See 4.6.2 for details of the
date format.

The standard argumentsfor utilities are also available, see 4.9.1-2.
Examples

-> delete oldfite-f77

-> delete * -noconfirm

-> delete *-rif -force
-> delete * -before 15-Aug-85

OPS Issue 1 77

Chapter 6

-> del ete oLdfilLe-*

Functi ons

Delete takes alist of file names to delete. Usually locked files will not be
deleted, but this may be “forced' using the standard “-Force' option. Note
that files specified on the command line are deleted in reverse order, so to
delete an entire non-empty directory including both the directory and its
contents, type

-> Delete dir,dir...
NOT
-> Delete dir...,dir .

By default, the standard keyword "-Confirm' is always set, i.e. confirmation
is always expected before an object is deleted. To override this, use the
~NoConfirm' keyword.

78 OPS Issue 1

Uilities

6.8 Echo Command

This utility allows the user to perform parameter substitution on its
arguments thereby evaluating them.

Concepts

See4d 8.3.

General Form

-> Echo argunents

Arguments

[-Lines] or [-NI]
Blank lines can be printed after the material has been echoed by either
specifying -NI (newline) or -lines for however many blank lines are
required.

[-TO] name
Usually “echo’ sends its information to the standard output device, i.e.
the screen. By specifying this option the user can cause the output to
be sent to some other device, e.g. printer: or afile.

The standard arguments for utilities are also available, see 4.9.1-2.

Examples

-> echo a few words

a few words

-> echo cli$path's value is <cli$path> -nl

cli$path's value is dfs::0, dfs::2

OPS Issue 1 79

Chapter 6

Functions

This program takes a single argument (which may include spaces and
punctuation such as commas) and printsit on the screen. The command
interpreter carries out parameter substitution, and therefore global variables
and arguments in acommand file may be evaluated.

The following command file illustrates this process. It provides asimple
version of the “catalogue' utility.

$ key files/e/?C*7
$ echo <files>

80 OPS Issue 1

Utilities

6.9 L ogon Command

This utility allows the user to log on to a network file server, and isthus the
Panos equivalent of the*| AM command.

Concepts
See Econet File Server User Guide.

Genera Form

-> logon arguments

Arguments

[-AS] logging on details
This keyword (itself optional) is followed by the station number, user
id and password (or subset thereof), constituting the body of the
logging on command.

[-Pass] password
If this optional argument is quoted, then the user will be prompted (on
the next line) to enter an un-echoed password.

The standard arguments for utilities are also available, see 4.9.1-2.

OPS Issue 1 81

Chapter 6

Functi ons
This command sets the working directory on the network filing system

(nfs:) to be the specified log-on directory (nfs:&). It does not otherwise
change the current working directory.

Exanpl es
-> | ogon |ionel

-> logon -as fred secret
-> | ogon 4.126 panosthings -pass

82 OPS Issue 1

Uilities

6.10 Rename Command

This utility allows the user to rename a list of files or directories.

Concepts
See 25.

General Form

-> Renane argunents

Arguments

[-FROM] file names
This keyword (itself optional) refersto the list of files to be renamed.

[-AS] file names
Thelist of new file namesis (optionally) preceded by the keyword -AS.

[-BEFORE] date
Renamethefile only if its datestamp is before the date and time
specified (or if it does not have avalid datestamp). See 4.6.2 for the
date format.

[-AFTER] date
Rename the file only if its datestamp is after the date and time
specified (or if it does not have avalid datestamp). See 4.6.2 for the
date format.

The standard arguments for utilities are also available, see 4.9.1-2.

Examples

-> renane ol dName newNane

->renane -fromthis -as that -force

OPS Issue 1 83

Chapter 6

-> renane ol d new -verbose
->renane S.adir.* -as S bdir.* -force
-> renane adfs:*- -as adfs:*-rif -confirm

Functi ons

The rename command lets the user rename a list of files or directories. Both
the original and new files must be on the same medium, i.e. same physical
surface of the disc. If it isrequired to “rename’ across filing systems or discs,
use the Copy command with the -delete option which is effectively the same
thing.

If wildcards are used, the matched wildcards in the source list are
substituted for the corresponding wildcards in the destination (if both
source and destination strings are wildcarded).

84 OPS Issue 1

Utilities

6.11 Set Command

This utility allows the user to set the value of various Panos attributes, viz
date and time, tabs, global variables, vdu characteristics, function key
bindings, and current working directory.

In effect it isafamily of commands: Set Date, Set Tabs etc.

Concepts

See:
22 attributes
255 current working directory
2.7 global variables
44 function key bindings, tabs
46.3 time and date

General Form

-> Set Attribute arguments

Attributes and Arguments

DATE/TIME date
This sets the date or date and time to the date specified by the -DATE
or -TIME keyword. If no time is specified, then 00:00:00.00 is
assumed; if no date is specified, then the current date (if set) is
assumed. See 4.6.2 for the date format.

The day of the week can also be submitted. The word “Today' is aso
allowed and is assumed to have atime of just after midnight yesterday.
Thisisuseful for backing up files which have been altered during the
day.

TABS[-AT positions] [-THEN increment]

Sets the tab stops for the tab key. The tab stops can be set to
incremental or absolute positions.

OPSlssue 1l 85

Chanter 6

Incremental positions are numbers prefixed with aplus sign, and are
relative to the previous tab stop. Absolute positions are simply column
numbers.

The -THEN keyword describes column intervals. For instance, -AT
4,12, + 2 -THEN 8 would set tab stops at positions 4, 12, 14, 22, 30, 38
and so on.

VAR [-NAME] name [-VALUue] value
This sets the value of aglobal variable. This set built-in command is

similar.
VDU attribute value
This sets the value of a VDU attribute:

-MODE screen mode,

-COLour text colour,

-FOREground as colour,

-BACKground background colour,
-PAGEd page mode (enabled-TRUE

or disabled-FALSE).
For representations of the values for each of these, see 4.6.3.

KEY key-number string
This assigns a string to the specified soft key. Typing | j at the end of
the string will cause a carriage-return to be appended to the string
when the specified key is pressed.

DIR directory
This sets the current working directory to the directory specified. The
directory name may include wildcards.

The standard arguments for utilities are also available, see 4.9.1-2.

Exanpl es

-> set date 15th feb 85

-> set date monday 1st august 1983 4:14 pm
-> set date 05-mar-85 12:56:00.67

-> set time 2:02 pm 1985/february/15

-> set tabs -at O, 4, 10, +6, +6, +6 -then 8

86 OPS Issue |

->

->

set
set

set
set

set
set

set

set

var -name cli$path -value dfs::0, dfs::2, a

var cli$prompt "& "

vdu -node 3

vdu -col our cyan

vdu - background flashing-red

vdu - paged true
key 3 "edit nyprogran "

dir $

OPS Issue 1

WUilities

87

Chapter

6.12 Show Command

This command actsin away complementary to set, i.e. it shows the values
of various Panos attributes, rather than setting them.

Concepts

See:
2.2 attributes
255 current working directory
27 global variables
4.4 function key bindings, tabs
46.3 time and date

Genera Form

-> Show attribute arguments

Arguments

[-TO] name
See4.9.l.

[-SET]
Formats output ready for re-setting. A use for thisis the creation of a
command file which will set the shown attributes to their current
values.

Attributes and Arguments

DATE/TIME
This shows the time and date in textual format.

TABS
This shows the current tab settings.

88 OPS Issue 1

i Jtilities

VAR [variable-name]

This shows the value of one or more global variables. If no
variable-name is given then all global variables are printed. Wildcards
may be used.

VDU [attribute]
This shows the value of aVVDU attribute: see under Set command for a
list. If no attribute is given, al are listed.

KEY [-Numbers] [number]
This shows a soft key's string. The key number is optionally specified
by a-Numbers keyword, i.e. show key -numbers 3,4,6. If no keys are
specified, then all are shown.

DIR
This shows the full pathname of the current working directory.

The standard arguments for utilities are also available, see 4.9.1-2.

Exarnples

> show date
> show tine

-> show tabs -set

-> show var

-> show var prograng*

-> show var file$* -to setfiles-cnd -set
-> show var file$-nod, alias$*

-> show vdu node

> show key 3,4,5,9,2
> show key -nunbers 7,2

-> show dir

OPSIssue 1l 89

Chapter 6

6.13 Star Command

This utility allows the user to issue BBC style * commands.

It isa dangerous command which enables the user to send commands to
the BBC Microcomputer's command line interpeter. Such commands are
usually preceded by a*' in environments such as BASIC, hence the
command's name.

Concepts
See the Panos Programmer's Reference Manual.
General Form

-> Star argunents

Arguments

[Command]
Thisisthe text of the command to be issued.

Examples

star fx 5,4

star screenbDunp

>
>
-> star free
> star map
->

star conpact

90 OPS Issue |

Utilities

Functions

Since Panos does a lot of work “behind the scenes to keep up its
environment, the result of issuing * commands is not always predictable,
and they should only be used when no other means exists. The integrity of

Panos cannot be safeguarded.
The current directory is selected for the operation of a star command.

OPS Issue 1

9l

7 Editor

7.1 Introduction

7.1.1 Context

The editor is used in the creation and modification of source programs for
the language compilers and the assembler. It may also be used for general
applications, for example, preparing manuals which are formatted by a
formatter program such as GOAL, or for preparing data or command files.
Infact it can edit any file, text or binary.

It is screen- rather than line-orientated. That is, text is displayed a “page’ at
atime on the screen and may be altered by moving the cursor around using
the cursor keys, and by typing.

The concept of windows is fundamental to the editor; severa files can be
edited simultaneoudly, and material can easily be transferred between files
which are viewed through their own separate windows.

Access to the Command Line Interpreter is also available from the editor,
so compilers, utilities and built-in commands can be used from within an
editor window. For example, thisis useful for inspecting and switching
directories. One particularly useful feature isthe ability to compile
programs from within the editor whilst editing, the program source, and
sending the error messages to another editing window; thus the
compile-edit-recompile cycle is much smoother, easier, and less
time-consuming.

Because the editor is principally designed for the preparation of source
texts, it has powerful search and replace facilities which includes
sophisticated pattern-matching.

Most of the editor’s facilities are attached to function keys (to in
conjunction with (SHIFT) and (CONTROL)). Generally the action of a
command issued by pressing a function key is to alter the text in an editing
window with immediate display of the alteration. Some commands,
however, cause a ‘prompt’ window to appear on top of the original editing

OPSlssue l 93

Chapter 7

window. This window prompts the user for a particular response, and
disappears after the response has been made.

A few commands are carried out using control keys. Except during
prompts, the normal printing (i.e. non-function, non-control) keys are used
for inserting text into the text window. The editor isrelatively 'mode-free'.
In particular, there is no overtype mode.

A summary of the function of each key may be found in the key cards
supplied with the system.

7.1.2 Basic Facilities

In common with similar programs, the Panos editor is best understood and
learnt through use and experience. Before the remainder of this chapter, a
simple demonstration and exercise are given which will serve to introduce
the basic editor facilities.

Try entering the small Pascal program listed below. If preferred an
equivalent C or FORTRAN 77 program, or plain text could be substituted.
Program sources in various languages can be found on the Welcome disc.
The confidence test ("Hello World") found on each language disc could be
used as a basis for exploring the editor.

PROGRAM Wor I d (CQut put);
| Acorn 32000 |SO Pascal - basic confidence test)

BEG N

WiteLn (' Hello Pascal world")
END.

First load the editor. To edit anew file type:
-> edit

When the editor has loaded, it will announce itself with a version number
and after a short pause set up the screen with a white border around a black
background, i.e. an editing buffer appears which is viewed through a
window occupying almost the entire screen. An end of text marker which
looks like is placed at the top lefthand corner of the screen. As
characters are typed, the marker moves to the right.

94 OPS Issue |

Editor

To enter the first line, simply type it in. As usual, letters are entered in the
case determined by . Pascal ignores the case of all characters
outside of strings, so the program above could be typed in either case.

It is important to note that the normal line editing keys (see 4.4) do not
necessarily have their usual actions within the editor.

The key, however, is similar. A mistake typing the first line, for
example, can be corrected by pressing the key. This key erases the
character to the left of the cursor and moves the cursor left one position.
Holding down enables several characters to be erased.
Over-enthusiastically deleted text may be restored by pressing the
combination - . The alternative method of deleting characters
is to use the key. This removes the character at the cursor position,
shifting the rest of the characters on the line to the left. It is often easier to
use when removing a series of characters, as the cursor is placed
over the next character to be deleted.

Note that this use of is certainly non-standard, and does not copy! It
is however very convenient within the editor to have the complementary
delete keys next to each other on the keyboard.

Once the first line has been typed without error, press . This moves
the cursor onto the start of the next line and inserts an invisible end of line
character at the end of the first line.

The fourth line is indented slightly. To do this, press the space bar the
appropriate number of times (four in the example above), or alternatively
press . This key tabulates the line into columns eight spaces wide by
default (but see section 6.11). Press = (@ and tab spaces will show up
as arrows (on the screen only, not on printed text). This is the best way of
seeing how works.

Once some text has been typed in, try editing it. Editing entails adding,
deleting, moving and changing text.

To add text, simply type it in where it is required; it will be inserted at the
cursor position. The cursor can be moved to any location on the screen page
by using the four cursor-control or arrow keys. Pressing one of these moves
the cursor one character position in the indicated direction. Note, that it is
not possible to move the cursor above the top of the text or below the

NSRS marker.

Experiment with the cursor keys to see the effect they have on the cursor.

OPSssue 1 95

Chapter 7

Note that the editor always operates in insert mode, that is, characters
typed in have the effect of ‘shifting-along’ any text which follows. This is
distinct from overtype mode editors in which new characters replace
characters already present.

To conclude this simple editing session, save the text; press . This is
the function key marked f5 above the row of number keys. A prompt
window will be created and a request will be made for a file name. Type the
desired name (e.g. test-pas) followed by . The file will be saved
under the name given and then the prompt window will be removed.

To exit the editor, press - and respond ‘yes’ to the prompt.

Organisation of this chapter

By way of introduction, many of the basic facilities have been described
through example. The concepts behind the use of the editor are documented
next. Thisis followed by the organisation and start-up.

The editor has its own command language based on the use of function
keys, so thisis documented along with many of the simple facilitiesin a
section on its own. Associated with this language is a display plus feedback,
so these too are documented separately. Finally more complex user actions
are defined in terms of the facilities provided.

7.2 Concepts

The editor is based on the concept of windows. An edit window is
conceptually alimited sized port onto atext document. The window may be
moved around to gain different views of the document. Each window has a

corresponding buffer (area of memory), of agiven and fixed size.
Associated with the port is an area of the screen which displays the current
text.

In addition to edit windows, other forms of window are used for dialogue,
help etc_as follows:

96 OPS Issue |

http://etc.as
http://etc.as

Editor

prompt window (a dialogue box)
command window

error window (an alarm box)
help window

When multiple windows co-exist, they are usually mapped onto the screen
in such away that some are on thetop of (and thuswholly or partially
obscuring) others. However, thereis always a window which is active' at
any onetime, i.e. the window which containsthe cursor, and upon which all
functionstake effect. Thisappliesto all windows including non-editing
windows such as prompt windows. |n fact such windows nor mally only
exist when they are active.

The cursor hastwo separate functions. Thefirst indicatesthe current insert
point for typing new text which is conceptually immediately before the
cursor. Secondly it selectsindividual characters, lines, or blocks of text.
The cursor isguaranteed to bevisible if the active window ison top.

7.3 Editor Organisation

7.3.1 Installation

The editor should have been installed along with the Panos system, as
described in the User Guide supplied with the system. Difficultiesin getting
the editor to work properly are dealt with in 7.8. If using the editor in
conjunction with the DFS, a system disc should have been created, which is
placed in thetop drive.

A number of global variables affect installation - see 7.3.3.

7.3.2 Loading the Editor

Toload the editor, enter Panos asusual. If using Panosin conjunction with
the DFS, insert the system disc in thetop drive (e.g. the language system
disc).

A number of options can beissued which mainly affect start-up behaviour.
Various global variables can also be set by the user which can further
determinethe editor's behaviour; these are described in 7.3.3.

OPS Issue 1 97

Chapter 7

General Form

The editor may be called by typing:

-> edit
-> edit filenane options

-> edit argunents

Thelast form isjust the general case where arguments may include afile
name or may be empty. The second form loads afile to be edited, the first
does not.

Arguments

-Help
See 4.9.1. It prints out alist of the options. Note that it is not the same
as, nor does it give access to, the help information associated with
editor functions, which is obtained by pressing s FT - Escare from
within the editor, and is fully described in 7.6.1. Thisiswhat the
“-help' option will produce (for version 1.10):

-> edit -help

Edit 1.10
Keywor ds:
-File <file> File nanme to start editing
- Li ne <nunber > Li ne nunber to junp to
-Buffer <size> specify buffer size (50000 default)
-Obey <file> CObey KeylLog file
- New Create a new file
- Browse Prevents altering or saving file

d obal vari abl es:

EDI T$Host Code Host-code file nane
EDI T$lnitfile Optional initialisation file
EDI T$Scr eenMbde Opti onal screennode (0/3)
EDI T$Ext ensi on Optional default file extension
EDI T$KeyHi st ory Optional keystroke history file
EDI T$Hel pFi |l e Optional help file

-Identify

See4.9.l.

98 OPS Issue 1

-File

Edi t or

The keyword -Fileisnot normally required since positional notation is
thenorm for thefilename.

-Buffer

Thisoption isused to set the size of the buffer. The default sizeis

50,000 bytes. The maximum buffer size depends upon the memory
(RAM) available. Note that when afileisfirst loaded into the editor,
the buffer isautomatically set to accommodate the size of that file.

-Line

This option specifiesaline number. In the example below, when the

fileisloaded, the cursor will be at line 45. See also section 7.7.2
(sear ching) and section 7.7.4 (jumping to aline).

-Obey
Thisobeysa filewhich containsarecord of all key strokes (including
function keys) which have been made during a previous session with

the editor. Creating and using keylog filesis dealt with in 7.7.3.

-New

saved, it will be given the specified name as a default.

If thiskeyword is specified without a file name, then the effectsarethe
same astyping "Edit' on itsown, i.e. a new editing window is cr eated
with no name. However, if afile nameis specified then when thefileis

-Browse

Sometimesit is useful merely to view afile with no intention of
changing it at all. As a safeguard against accidents, the keyword
“-Browse' permits editing without altering or saving thefile.

E.raniples

Edi t
Edi t
Edi t
Edi t
Edi t

-File buffer

bi gfile3 -buffer 600000
dfs:: 2. Mop-crmd -line 45
Frog - New

Preci ous-txt -browse

CPS Issue 1

99

Chapter 7

7.3.3 Global Variables

The behaviour of the editor is governed to some extent by the values of
certain global variables, the meanings of which are described in this section.
Asisusual with such variables they may be set by the user (see 2.7).

In the version of !Panos supplied with the system, there are two global
variables pertaining to the editor, although only "Edit$HostCode' must be
set for the editor to function.

Edit$Hos tCode

This global variable must be set to the full pathname of the editor host code.
In the versions of !Panos for the ADFS or NFS and for the DFS these are
different, with values as follows:

AD/NFS "$.Panodlib.Edit6502-bbc”,
DFS ":0.ed6502-bbc".

The only reason why this should ever be changed, isif the pathname of the
host code changes (for instance, if the name of Panoslib is altered).

Edit$ScreenMode

By default, the editor isin screen mode 0. This can be switched to 3 if
desired. In mode 3, the windows have dotted line boundaries, less lines per
window, and the cursor is larger and easier to detect. To change mode from
0to3:

-> set var edit$screenmode 3
Edit$Extension
This variable sets the default file extension for files to be edited, so, for

example, if FORTRAN 77 source files were the only type of file ever edited,
then it would be convenient to set this variable to *-f77'. For example:

100 OPSlssue l

Edi tor

-> set var Edit$Extension f77

This means that -f77 extensions need never be specified. However, in order
to edit afile which has no extension, it would be necessary to add "-" to the
end of the file name.

Edit$HelpFile
The editor has help facilities which reside in afile whose name is the value
of this global variable. Values supplied with the default ! Panos are:

AD/NFS "$.PanosLib.EditHelp-dat”
DFS ":0.edHelp-dat"

This global variable need only be altered if the help file has been moved, for
instance, if "Panoslib' has been renamed.

Edit$Cotntnand

This variable determines the window and buffer size of the command
window. The general form for itsvalueis:

"-height h -width w -buffer b"

where h is the height of the command window in lines, w isthe width in
characters, and b is the buffer size in bytes. For example:

OPS |ssue 1 101

Chapter 7

"_height 12 -width 77 -buffer 2000"
isthe default.

Edit$K eyHistory

See7.7.3.

7.4 Display

7.4.1 Screen Layout

The screen is divided into editing windows and atop status line. The status
lineis used partly for instructions, (see 7.6.2), and partly to display a clock
(see 7.4.5).

Pop-Up windows are superimposed temporarily onto the screen at a system
defined place for dialogue, warnings etc., see 7.5.7 and 7.6.

Editing windows display a portion of the text in the buffer associated with
that window. As editing takes place the display is updated. However the
re-display onto the screen takes place in away that may be unfamiliar, and
alittle strange at first. The screen is only re-displayed every “clock tick' and
when the editor is not busy carrying out an action.

The effect is the user does not have to wait for the editor to redraw the text
before continuing with the next action. Indeed if a complex sequence of
actions are carried out only the final display and perhaps some intermediate
ones may be seen. This has little effect on the beginning user, but speeds up
operation for the advanced user.

7.4.2 The Cursor

The cursor is displayed in the “active' window as a flashing underscore, the
exact form depends on the screen mode. Each window has a separate
cursor, those not in the active window have a different, but non-flashing
representation. Note that this applies to all windows, including for example
prompt windows, i.e. when a prompt window is active the cursor is
employed for the user response.

102 OPS Issue 1

Editor

A flashing cursor indicates a modified buffer. If the buffer is newly loaded
or saved, then the cursor does not flash.

The cursor isvisibleif the active window is on top, or if not obscured by a
window that is aboveit.

7.4.3 Position Indicator

Asthe cursor changes its position, athin vertica linein the top border of
the screen moves to the right. This indicates where the cursor isin relation
to the whole of the text. When thisline isin the extreme |eft position, the
cursor is at the top of the text; when it isin the extreme right, the cursor is
at the end of the text. Thisfacility operatesfor all editor windows.

7.4.4 Line Overspill

Lines of text are sometimes longer than the width of an editing window; this
may be particularly prevalent in documents not originally created using the
Panos editor and in non-text files. Line overspill isindicated by two dots
cutting into the right border of the window.

For example, move the cursor to the start of aline and hold down akey _ It
will start to auto-repeat after awhile, and the line will fill up with that
character. When the cursor has just passed the end of the line, release the
key. Press the cursor left key until the cursor re-appears on the line. A white
triangle appears to the right of the border. This shows that the cursor is
located beyond the edge of the window. The two small dots which remain
mean that there is more text on this line and act as an indication that what
ison the screen is not a representation of the whole text.

There are several ways in which the text that is missing on the right of the
screen may be revealed.

Firstly, - (® changes the setting of the ‘folded mode’ switch. In this
mode, characters which would normally be off the screen are shown on the
next line down. The border character changes to a curved arrow to indicate
that the second line is not separate from the first but a continuation of it.
This mode may be disabled by pressing - (B again.

A second method is to type at the end of a word just before the
edge of the editing window. Characters off the edge will now form a new
line. Text saved using this method retains the new lines.

OPS|ssue l 103

Chapter 7

The third method, is to press - ~. This shifts the whole
window including the cursor to the right, displaying text which would
previously have been invisible.

- can be used with any arrow key, shifting the window in the
appropriate direction. See section 7.7.5 for more details about this type of
cursor movement.

7.4.5 The Clock

When the editor isidle (i.e. not performing an operation), a clock at the
upper right hand side is constantly “ticking'. The clock uses the system
variable sys$date, which isinitialised when the date is set.

7.4.6 Display of Special Characters

The editor is able to accept and display al ASCII characters. Printing
characters are displayed in edit windows in the obvious fashion.

Non-printing characters are displayed as their hexadecimal value in a small,
underlined type style. Each occupies two normal character positions on the
screen but is edited asif it were asingle character.

For details of input of non-printing characters, see 7.5.
In addition, a special representation may be used for tabs.

7.5 Command L anguage and Basic Functions

Introduction

The editor isloaded in the normal fashion by the command line interpreter,
see 7.3.2. Onceloaded, actions are carried out entirely through the use of
special keys, i.e. the editor has its own command language tailored for its
particular function.

This section introduces the command language in terms of groups of specia
keys. These groups are:

104 OPS Issue 1

Editor

- printing keys

- cursor movement keys
- deletion keys

- control keys

- function keys

- other keys

Some keys have different meanings outside of edit windows, i.e. in prompt
windows, help windows etc. These are dealt with separately.

Tables summarising the effect of the special keys may be found in the key
cards supplied with the system.

The special keys may themselves be inserted into the text by prefixing them
with the ‘escape’ character -(). Thus - inserts the
character whose ASCII value is 16_80.

7.5.1 Printing Keys

Printing keys simply insert text (see 7.1.2). The key introduces a
newline character NL (ASCII LF, value 10) and is displayed as a new line,
but is otherwise invisible.

Highlighting Tabs

Pressing - (D will show up any tabs in the text as a long right arrow.
This can be useful as it is otherwise impossible to detect the difference
between spaces and tabs. Pressing - (@) once more will cause all of
the arrows to disappear.

7.5.2 Cursor Movement Keys
Pressing the cursor keys moves the cursor one position. Larger movements

are available using the and control keys. The effect of all cursor
movement keys is shown in Table 7-1.

OPS|ssue 1 105

Chapter 7

Table 7-1 Cursor Keys

1 moves the cursor up one line

1 moves the cursor down one line
moves the cursor left one character
moves the cursor right one character

SHIFT-t moves the cursor up one page (window)
SHIFT-4 moves the cursor down one page (window)
CTRL-- moves the cursor to the start of the line
CTRL-- moves the cursor to the end of the line

CTRL-t moves the cursor to the start of the text

CTRL-4 moves the cursor to the end of the text
CTRL-SHIFT r displaces the window to the right over the buffer
CTRL-SHIFT - displaces the window to the left

CTRL-SHIFT t displaces the window upwards

CTRL-SHIFT 1 displaces the window downwards

Note: lines are regarded as sequences of characters terminated by newline
characters. Thus if a line spans more than one screen line and line-wrap is
enabled by -®, -(® and - (® may move the cursor
up or down screen lines as well. at the start of a line moves the cursor to
the end of the previous line. However at the end of a line effectively
extends the line with spaces.

It isnot possible to move the cursor before the beginning of the text, or after
the end-of-text marker.

See also section 7.7.4, which shows how to make more specific movements
within the text.

7.5.3 Deletion Keys

The keys (COPY), (DELETE), and (CTRU - (U) may be used possibly in
conjunction with to delete a single character, or all or part of a line.
This is summarised in Table 7-2. In this context, newline acts as a normal
character, thus at the beginning of a line, or at the end will
concatenate two lines.

106 OPS|ssue l

Edi tor

Tabl e 7-2 Del eti on Keys

DELETE deletes the character to the left of the cursor

COPY deletes the character to the right of the cursor

CTRL-DELETE deletes the line to the left of the cursor

CTRL-COPY deletes the line to the right of the cursor

CTRL-U deletes the whole line of text where the cursor is
located

7.5.4 Control Keys

A few control keys including -, CRD -, (€TRD -, and
= (@ have particular effects. These are documented separately.

The key - M which represents the end of line character in BBC
Microcomputer prepared text files is treated as a printing character, i.e. it
may be inserted directly without escaping it with -M

7.5.5 Function Keys

Many of the editor’s facilities are accessed by pressing the function keys,
possibly in conjunction with or . Generally, a function which
requires a key to be pressed in conjunction with is more ‘powerful’
or ‘dangerous’ than other types of function requests. For instance, (1) used
on its own copies a block of text, reproducing the original at another
location; (SRIFT) - moves a block, deleting the original.

These are documented in terms of the actions they carry out in subsequent
sections.

7.5.6 Other Keys
The (ESCAPE) key has no effect during normal editing, but abandons the

current action in command windows, error windows etc.

(SHIFT) - (TAB) may be used to undo the effect of previous deletions. See
7.1.2 for details.

OPS Issue 1 107

Chapter 7

7.5.7 Prompt Windows (Dialogue)

A number of commands (function keys) require further input from the user,
e.g. afilename or a search pattern. A prompt window (or dialogue box)
appears, and the user isinvited to type aresponse.

The prompt window is an editing window in its own right. Thus the usual
cursor movement and editing keys are available (such as) and it is
even possible to use an editing function such as searching.

However, the key has special properties in a prompt window; instead
of deleting one character at the cursor position, it repeats the last string
entered in that context, be it a search/replace pattern, or a file name. This is
particularly useful when saving files, as the full file name need not be
retyped.

7.5.8 Command Windows (Panos CLI)

Command windows provide access to Panos commands. Press and a
command window will appear containing the Panos -> prompt. For
example, to catalogue a directory type:

-> Cat
To return to the editor, press (RETURN) or (ESCAPE).

Almost anything that isnormally carried out by Panos (except running the
editor) can be done from this command window. Not only can the utilities
berun, but also the compilers, linker, and user programs.

Thisisvery useful for debugging. A typical cycle for program development
may be asfollows:

Edit program source

l.

2. Save program sour ce

3. Compile program sour ce from within an editor command window

4. Scroll up and down from within this window, making notes of the
errors

5. Return to editing the original program source

Note that throughout the session, the program source remainsvisiblein the
main editing window. The actual commands used (for a Pascal program
called “test') would be:

108 OPSIssue 1

Editor

-> Edit test-pas
{Editing commands)

(f5) - (corY)

(f3

-> Pascal test

RETURN

Using the compiler “-error' option, and then copying the error fileto an
editor command window gives a glimpse of the errors resulting from the
compilation. Because the window is smaller than the potential size of the
error list, only afew lines can be present in it at any one time. However it is
possible to scroll up and down within this window, carry out searches and
other functionsjust asin the main editing window.

An alternative method isto load in the error file to a separate edit window.
Window creation and manipulation isexplained in 7.7.5.

The key (COPY) has a special meaning in a command window: it repeats the
previous command.

The size of the command window is governed by the Edit$Command global
variable, (see 7.3.3).

Note that the use of command windows is subject to memory constraints.

7.6 Feedback and Errors

The editor provides feedback to the user in a number of ways. Normally
thisis documented under the particular event, but a number of common or
special items remain to be described in this section. These consist of help
information, and error messages.

The cursor may be used to select a character, or line, and in conjunction
with function keys, a block. Feedback is given to indicate the selected
character or block, see 7.5.2 and 7.7.1.

The position of the cursor as a proportion of the text is also displayed, see
7.4.3.

The text buffer itself is displayed through an edit window, see 7.4.1.

Chapter 7

7.6.1 Help Information (and Windows)

Therearethree sources of help for the editor: this document, which offers
the most comprehensive information, the “keyboard cards which serve asan
at-a-glance reminder, and on-line help. This section describesthe on-line
help facility, which isentered from within the editor and isviewed in a help
window. Thisisnot the same asthe help information about start-up

options, which is accessed outside the editor asdescribed in 7.3.2.

Help Windows

On-line help can be accessed from within any text window by pressing the
keys - . It consists of a series of three ‘pages’, with headings
‘General’, ‘Keys’, and ‘Buffers’.

There are two ways of moving around the help text: using the cursor keys to
move between headings, and pressing - to enter a page,
and to exit a page. Note that not all the information displayed on
a page represents all the detail there is: experiment to see what the on-line
help does contain. A short tutorial exercise is given below.

Exercise

1. Press (SHIFT) - (ESCAPE

2. Noticethe “highlight cursor'. Thisdraws attention to the present location
within the on-line help text. At first, thisis placed over “General'.

3. Presstheleft-arrow cursor key once. Thiswill now change pagesto the
‘Keys' page.

4. Now enter the ‘Keys’ page by pressing - . A list of all of
the editor function keys and the actions they perform will appear.

5. Pressthe down-arrow cursor key a few times, and the function key
headings will be highlighted.

6. Now presstheright-arrow cursor key threetimes, and control key
functionswill be displayed.

7. Press to return to the previous help page, and now explore the
‘buffers’ help page.

110 OPS Issue 1

Editor

8. To return to the main editing window, press whilst in the first
(‘headings’) help page.

7.6.2 Error Messages (and Windows)

There are two types of errors. some cause the appearance of error windows,
and others generate a warning message which appears at the top left hand
corner of the screen above the normal editing window.

Warning messages draw the user's attention to the fact that something has
happened which may not have been intended, but which has not caused the
editor, Panos, or afiling system to behave abnormally. An example of a
warning messageis

War ni ng: Search not found

This message remains until (ESCAPE) is pressed.

No user action is normally required. However the warning may be
associated with some kind of ‘recovery’ action by the editor. In the above
example it is assumed that a different search is required, so the prompt
window is redisplayed. At this stage either the corrected search pattern
may be typed, or pressed to terminate the action.

Error Windows

Error windows (or action boxes) appear following a more serious user
.error'. In contrast to warning messages, errors which produce an error
window cannot be ignored, and until some action is taken, editing cannot be
resumed. Thisfollowing is an example of an error message.which occurs
when an attempt has been made to load a non-existent file called faulty:

Error: Fromnodule File

File 'Faulty' does not exi st

If the user now types anything other than , another message
appears in the window:

OPS |Issue 1 11

Chapter 7

[L Press Escape to continue 1]

After pressing (ESCAPE), the user is returned to the ‘Load” window to have
another attempt at spelling the file name.

7.7 Advanced Editor Functions

Specific editor functions are described in this section expressed in terms of
actions required by the user.

7.7.1 Block Editing

Single characters or lines may be deleted using , or
- (. It is often required to delete or to move or to copy a section of
text. These three functions may be performed using markered blocks.

Selecting a Block

A marker is a notional position indicator embedded in the text. It is set by
moving the cursor to the desired position and pressing .

The start of the markered block is indented after the sign [ETETY.

The end of a block may be either a second marker, or the cursor itself. If a
second marker is set, the first marker is replaced by FINTSEIEIN, and the
second marker is called ElNT SN

To delete a misplaced marker, press . If two markers are set, then both
are deleted when is pressed, unless the cursor is placed at one of the
marker positions, in which case, only the other marker is deleted. Markers
are automatically deleted after block operations, except for block copying.
This is so that more than one copy of a block can easily be made.

Block Commands

The block commands are:

fo Set a marker at the cursor position

112 OPS Issuel

Editor

f2 Delete marker

fl Copy the block delimited by marker 1 (Block Start) and
marker 2 (Block End) to the cursor

SHIFT-fl Move the block of text delimited by marker 1 (Block Start)
and marker 2 (Block End) to the cursor

SHIFT-f2 Deletes the block of text between the cursor and the single
marker.

Block Deleting

The sequence of actions for deleting ablock is:

l. Set amarker at the top of the piece of text to be deleted. Only one
marker may be set during a block delete.

2. Move the cursor to just after the last character to be deleted.

3. Press - . The text between the marker and the cursor will

disappear. The marker itself will also be deleted.

Pressing - will restore mistakenly deleted text.

Copying a block

The sequence of actions for copying a block is:

1. Position the cursor at the top of the text to be copied and set a
marker there by pressing

2. Position the cursor at the end of the text to be copied and set a
marker there by pressing again

3. Move the cursor to the point in the text where the text is to be
copied.

4. Press

Moving a block

The sequence of actions for moving a block is:

1. Position the cursor at the top of the text to be moved and set a
marker there by pressing

OPS Issue 1

113

Chapter 7

2. Position the cursor at the end of the text to be moved and set a
marker there by pressing again

3. Move the cursor to the point in the text where the text isto be
transferred

4. Press (SHIFD - (D

7.7.2 Searching and Replacing

Searching for occurrences of patterns within text, (sometimes called strings)
and replacing them with other strings, is achieved using the function keys
and . Searching for strings is a useful technique for jumping to a
particular place in a document. Using these function keys with
repeats the last search or replace:

f7 find a search pattern
SHIFT-f7 find the next occurrence of the last pattern
f8 replace one string by another

SHIFT-f8 replace next occurrence by the same string

When or is pressed, a prompt window appears at the edge of the
main editing window, containing a request for a pattern:

Search C
or
Repl ace C ... I by I

A legal search string is anticipated (i.e. one which conforms to the rules
described below). After entering the string, press (RETURN) and the closing
‘" will be added. Replacing is a similar activity to searching, except that a
replacement pattern is also requested, and the match that has been
encountered will be replaced by the replacement string.

Scope

Normally the scope of a search or replace is from the cursor to the end of
file. The scope within which a search or replacement is carried out can be
restricted to a block by planting one or two markers which then form
boundaries beyond which all operations are inhibited providing the cursor is
within the block when the command is given.

114 OP$ |ssue 1

Editor

Normally searching takes place in a forwards direction. However, typing

- (B) as the very first character in the pattern causes the search (or
replacement) to be performed backwards from the cursor, stopping at the
start of the file. To provide feedback, - in this context is displayed
as a left-pointing arrow.

Search Patterns

Simple patterns consist of plain text which the editor looksfor exactly asit
has been typed (with the exception that upper and lower caselettersare
treated as equal). For example, the following sequence of eventswill ook
for thestring “procedure':

I. Movethecursor tothe start of text areato be searched (normally the
start of thefile).

2. Press - search for a string.
3. Type the pattern ‘procedure’, followed by .

If any occurrence of the pattern isfound, the cursor will be placed at the
start of it, otherwise the cursor position isunaltered, and a war ning message
will be displayed at the top left-hand corner of the screen just above the
main editor window:

Warning: Search not found

This message disappears when re-entering the main window by pressing
CAPE) . To find subsequent matches of ‘procedure’, press - .
This can be repeated until the last match has been found.

In addition to simple stringslike “procedur €', patterns may contain special
character swhich will match more general charactersor groups of
characters. A list of these special charactersisgiven in Table 7-3.

Sometimes it is necessary for these special characters to be used as literals,
e.g. it may be required to search for the string “$”. In such a case it is
necessary to prefix the special character with the pattern escape character

Vi. Non-printing characters in a search or replacement pattern should be
prefixed as usual with the (insert) escape character, -\

To prowde feedback that a special character has been typed, it is displayed
EBER in the prompt window. So, for example, the keys pressed
10 spectf\ a search pattern which matches the digit ‘1’ followed by some

OPS Issue 1 115

Chapter 7

other number, would be 1 p. The “# symbol would be displayed in inverse
video as shown. Literal uses of these characters are not displayed in inverse
video.

Special characters can be used in many combinations and there are few
restrictions on the number of one particular pattern that can form a search
pattern. So, for example, the search pattern the " will match any number of
Vs, h's, and €'sin succession.

The key has a special meaning within the search or replace prompt
window. It means the previous search, or previous replacement string.

Table 7-3 Special Search Characters

matches any character, including spaces, punctuation marks etc.
matches the newline character

matches the ‘identifier’ characters 0-9, a-z, A-Z and @

B Bz m

matches the digits 0-9

matches zero or more of ¢ in sequence, i.e. the null string, c, cc, ccc
etc. This always finds the shortest match

[%]
[e]

B¢ matches one or more of ¢ in succession, i.e. ¢, cc, ccc, ccee ete.
Always finds the longest match

cl B c2 matches any single character between c1 and ¢2 in ASCII order

abc il matches any one of a, b OR c, where a, b, and c are any single
characters

Be matches CTRL-c if ¢ is in the range @ to _ (ASCII 64 to 95).
CTRL codes may also be typed directly. If c is ? then [? stands for
DEL (ASCII 127)

Mc matches the character with ASCII code of ¢ plus 128

is a switch for case sensitivity. Normally upper and lower case in
patterns and text are treated as the same, so cAt will find cat, CAT,
CaT etc. However, if a pound sign is given in a pattern, case
sensitivity will be toggled (flipped) from the pound sign onwards,
so that cAt will match only cAt, and ¢ AT will match CAT or
cAT.

116 OPS Issue 1

Editor

Replacement Patterns

Replacing text is performed using . This requires two pieces of
information: the search string, which is described above, and a replacement
string. For example, to replace all four-digit sequences in a file with the
same four digits placed in angled brackets (thus 1234 becomes < 1234>),
the following is required:

1. Press
2. Type in the pattern: # # # # followed by
3. Type the replacement string: < & > followed by

‘# # # # standsfor any four digits, and &' stands for a repetition of the
whole search pattern.

When amatch for the pattern is found, the editor will prompt with:
R(epl ace), S(kip), 0(nce), A(ll), E(scape) or H(elp) ?

Possible responses and their corresponding actions are shown in Table 7-4.
Only a single letter with no should be typed.

Replacement strings may contain special characters. These are shown in
Table 7-5. As with search patterns, the special replacement characters are
highlighted in inverse video. Use of these characters as literals requires
them to be prefixed with the pattern escape character

Table 7-4 Replacement Options

means make the replacement once and then stop,

returns to the main editing window, doing nothing,
makes the replacement and looks for the next match,
looks for the next match without making the replacement,
replaces all matches without prompting,

gives help on the command.

I>wxmo

Indw case of O, R, S, and A, the cursor isleft at the position of the |ast
replacement; E and H do not alter the cursor's position.

OPS Issue | 117

Chapter 7

Table 7-5 Special Replacement Characters

8 stands for the newline character
a stands for whole of the matched string
Be as patterns

Wc as patterns

stands for the nth (counting from zero) wildcard section in the
pattern. This is best explained by illustration. Take for example the
pattern a*._. This represents the largest number of the character ‘a’
in succession, followed by the next character, followed in turn by
an identifier character. %0 is the text matched by a, %] is the text
matched by *., and 9?2 represents the text matched by @.

In other words, % accesses one particular wildcarded section in the
search pattern.

To save counting, %n can be used to stand for the nth match, %*n
to stand for the nth * match and so on.

% + or -nissimilar to the above replacement pattern but forces the
matched pattern to be replaced in upper (+) or lower (-) case.
Thus % + *0 will replace whatever “*'represents in upper case, and
% + & will change to upper case all the charactersin the search
string.

\n allows literal digitsto be inserted after a %on. Thus, %#3\11
will NOT replace the 311 th occurrence of the # match, but will
replace the third occurrence, followed by the number eleven.

Examples of Replacements

Replace [Keith] by [Ben]
will replace all occurrences of "Keith" with "Ben"

Replace [(CTRD - (] by [8]
will replace all carriage returns, (ASCII CR, value 13) with newlines,
(ASCII LF, value 10). This is a way of converting BBC Microcomputer
text files to Panos (and ISO) standard (or vice-versa). The -™
will be displayed as hexadecimal OD.

118 OPS Issue 1

Editor

Replace [BlE A B Z 0 ss] by [(6]
will replace any occurrence of upper case characters from A to Z
followed by two ‘s’s, with the matched pattern followed by a new line.

Replace [B. BEE]] by [AIERAET 123]
will replace a literal full stop (.) followed by an ‘identifier’ character (|),
and two numbers (E§), occurring at the beginning of a line (), by the
‘identifier’ character (@), a newline (B), the first of the two digits in
the search pattern (#d), and the numbers 1,2,3, followed by a new line (
8).

Replace [CTRL-B B The (B §] by []
will delete backwards (from the cursor to the start of the text or marker)
the exact word ‘The’ (exact case), then any number of identifier
characters until the end of the line. Replacing by nothing is equivalent to
deleting.

7.7.3 Learnt Sequences

The editor has the ability to 'remember' a sequence of commands and
execute them all later. The sequence of commands which carry out a
number of other commands is sometimes referred to as amacro. To

compose an editing macro, follow these steps:
- Press to enter ‘learning’ mode

- Type in text and commands as usual. These will be remembered, in
addition to being executed immediately. Anything which would
normally be entered at the keyboard may be typed

- Press again to terminate learning mode

- To repeat the command sequence, press (SHIFT) -

Oht-ed Sequences

It may be convenient to keep arecord of actions within the editor, and
possibly 'replay’ them at alater stage. Thisis useful if the same pattern of
editing isto be repeated on a selection of files. This can be done by setting
the global variable 'Edit$KeyHistory' to any file name, carrying out the
editing sequence, exiting the editor, and then using the '-Obey' keyword to
obey the key history file. Thisis analogous to using Panos command files to

OPS Issue 1 119

Chapter 7

carry out a series of operations. The sequence is set out in the example
below:

Step 1:

-> set var Edit$KeyHi story LogFile
Step 2:

-> Edit filet

Step 3: Carry out sequence of editing commands etc. and then exit.
Step 4:
-> renane | ogfile OLdLog
Step 5:
-> Edit file2 -Coey LogFile
Whatever actions were performed during step 2 will be repeated upon the
same filein step 4. Compare this with using the learning function; the main
difference isthat the "logfile' is a permanent file, whereas the learnt

sequence is lost upon exiting the editor, or erased when a new learning
sequenceisinitiated.

7.7.4 Moving the Cursor

There are five ways of moving the cursor, and hence selecting a position, or
defining the insert point. These are shown in the following list. The first
three are described in full elsewhere, but repeated here for completeness.

I. By means of the cursor movement keys, (see 7.5.2).
2. Searching for a particular character, or group of characters, (see 7.7.2).

3. Entering the editor at a particular line through use of the “-line' startup
option, (see 7.3.2).

4. Jumping to a marker. After setting a marker, press - and
the cursor will be placed at the marker position.

5. Jumping to a line. This can be done after or before the current cursor
position by pressing - . A prompt window then requests a
line number. If the given line number is greater than the number of
lines in the document, then the cursor is placed at the end of the text.

120 OPSIssue 1

Editor

7.7.5 Windows and Buffers

Windows have been introduced in previous sections. In particular, prompt
windows, help windows, command windows and error windows have been
described in full, but edit windows have only been introduced. Some of the
concepts behind windows are put forward in 7.2.

It is possible to create more than one edit window containing separate texts
entirely; this enables more than one file to be edited at the same time.
Furthermore, one text may be split into a number of different windows,
which can then be edited and saved as separate files.

The window may be moved around to gain different views of the document,
usinga k - SHFT + arrow combination.

Each window has a corresponding buffer (area of memory), of agiven and
fixed size. Thisis determined by the size of the file which was loaded. If a
new file isto be edited, then the default size is 50,000 bytes, but this may be
changed using the “-buffer' start-up option.

The number of windows that can be opened simultaneously depends upon
the amount of memory available in the computer, and the size of the
buffers. For instance, if the buffer sizeis set to 700,000, then a machine with
one megabyte of memory will not support buffer duplication (i.e. a second
window will not be supported, and an error message will be given).

When multiple windows co-exist, they are usually mapped onto the screen
in such away that some are on the top of (and thus wholly or partialy
obscuring) others. This has already been seen in the context of non edit
windows, e.g. prompt windows. However, there is always awindow which
is'active' at any onetime, i.e. the window which contains the cursor, and
upon which all functions take effect.

Window manipulation is carried out using a selection of keys described in
Table 7-6.

All of the normal editing commands can be carried out in any window; the
editing commands can aso be used to transfer data between windows. For
example to move or copy ablock, first select the block by setting markers,
then select or switch to another window and execute the move or copy
command.

Note that markers can only be deleted in the active window.

OPSlssuel 121

Chapter 7

Each window also has its own associated on-line help information, obtained
via the help command - , which gives the status of the
window’s buffer (name of file in buffer, maximum buffer size, percentage of
buffer used, etc.).

Table 7-6 Window Manipulation Commands

CTRL-f6 Create new window
This is similar to other commands in that a prompt window
appears which expects a file name to be supplied. The new file is then
loaded into a window, and this new window becomes the ‘active’
window. There are a number of options that may follow the file name.

CTRL-SHIFT-D Duplicate awindow
This creates a whole new window (and corresponding buffer) identical
in size to the original window, thereby completely obscuring it, and
places the cursor in this new empty window ready for editing.

CTRL-SHIFT-S Splitting a window
Whereas - - (D causes the original buffer to be copied,
- - (8) splits the current window in two at the cursor
position, making a new window. The size of the buffer which the new
window looks into is the same size as the original. The new window is
emptv to begin with. and the original window is still visible.

CTRL-SHIFT-K Kill awindow
This command deletes awindow and its buffer. Be careful when using
this command to delete the correct window: the active window which
contains the cursor is deleted, and the cursor may not always be visible
on the screen.

CTRL-SHIFT-F Extend awindow
This command extends awindow to itsfull size, e.g. after splitting.

CTRL-SHIFT- a Select awindow
This command moves between windows, placing the next window on
top of the current window. The new window is made the active one.

CTRL-SHIFT-\ Switching between windows
This command is similar to - - (A), but the selected
window is not placed on top of the current window, although the new
window is made the active one.

122 OPS Issue 1

Editor

Exercise

As ademonstration of the usefulness of multiple editing windows, try this
exercise;

|. Edit a program source file which contains errors

2. Press

3. Compile this faulty program source (from within the Panos command
line window), sending the output to a named file

4. Return to the main editing window
5. Press (CTRL) - (SHIFT) - (&)
6. Load the error file into this second window

Now it is possible to switch between the two windows, using
- - (O scrolling through the one and editing the source
program in the other.

7.8 Problems

This section deals with difficulties encountered in loading and using the
editor. It also covers avoiding and repairing some basic mistakes. The editor
has powerful recovery mechanisms which reduce the possibility of losing

edited text. Error messages and guidance in recovery are provided on-line.
However, for completeness these are also documented below.

Messages in Error Windows

See 7.6.2.

PrescinY the Wrong Key
Hitting the (ESCAPE) key aborts the current activity whether running or

waiting for input. This is useful if a function key has been pressed
accidentally, or if an incorrect search/replace pattern has been typed in. For

OPS Issue 1 123

Chapter 7

example, if anincorrect search pattern has been given and the editor is
laboriously churning through the file, pressing Escape will halt the
process.

The Eescare key will also terminate acommand that has displayed a
prompt window, and return to the edit window.

Un-deletink

If text has been deleted by mistake, then press sHi F7 -TAB and the
deleted text will reappear. This also works for blocks of deleted text.

The Editor Window does not Appear.

This refers to the situation when the edit command has been given, but the
screen remains blank, even after a suitable pause.

If floppy discs are being used, check that the disc containing the editor is
placed in the top drive.

Thereis a chance that the Panos variables for locating the various parts of
the editor may not have been set up correctly. If thisisthe case, then either
theinstallation procedure has not worked correctly, or a customised (or
corrupt) version of !Panosis being used.

First try using an original version of !Panos to start-up Patios. There are
two variables which must contain the locations of various parts of the
editor: "Edit$HostCode', and "Edit$HelpFile’. These are initialised by the
IPanos start-up file provided with the system, and are therefore
automatically initialised when Panos is entered.

However, if Patios has been started up using a corrupt ! Panos file (for
example, because it has been deliberately modified), and the editor variables
are not present and correct, an error message results from attempting to use
the editor, and the window may not appear. Check with an original version
of 'Panos to see what these variables ought to be initialised to, and check
also that the help file and host code do exist as they are supposed to, see
7.3..

If it transpires that the editor has not been installed correctly (i.e. the host
code or help fileisnot in the right place), then it islikely that other parts of
Panos are also incorrectly installed; therefore, Panos should be re-installed
according to the instructions provided in the User Guide.

124 OPS Issue 1

Edi t or

Saving Files

If an illegal file name has been given, an error message window will be
created. Pressing (ESCAPE) returns to the ‘Save’ window for another try.
Attempting to save a file in a full directory will also cause an error:

Error : From Mdul e BBC
Dir full : '"file nange'

When saving files on floppy disc, there may be a shortage of space.
Compacting the disc may relieve this problem.

Pie Buffer

The editor buffer is 50,000 bytes by default when editing a new file. The
name, size, and percentage used of the buffer, number of lines, and line
number of the cursor position can be found out by looking in the on-line
help information under the title "Buffers.

The buffer size can be set by the “-buffer' option which can be issued on
loading the editor. See 7.7.5 for adescription of buffers. If the buffer size
has been set to be very large e.g. 700,000 bytes (using the '-buffer'start-up
option), then error messages will result if an attempt may be made to
duplicate the buffer, asthere is no memory space left.

Energenev EXxit

In the event of a disaster (software failsto perform, for instance), and it is
necessary to leave the editor and return to Panos, an emergency exit can be
engineered which preserves the contents of the buffer. The editing done
sincethe last 'Save' istherefore not lost. This may be carried out at any time
and from within any type of editing window.

Press - - TWICE, and through the text, the
following phrase will be displayed:

Sorry, But the Editor has stopped abnormally
Do you wish the buffers to be saved?

Thisawaitsa'y' or 'n' response. To return to Panos, type 'n’; to preserve,
type'y'. The editor then prompts for another affirmation:

OPS Issue 1 125

Chapter 7

Dunp "<file name>" as 'BeforeA and 'AfterA

Reply "y'. If more than one buffer was open, then more prompts would
appear for 'Befores and' Afters andsoon. Theinitia standsfor the
cursor position in the document; therefore, the contents of the buffer are
saved astwo files, one which contains al the text which existed before the
cursor, and one which contains text after the cursor up to the end of thefile.

When the Panos -> prompt reappears, simply copy the files ‘BeforeA' and
‘AfterA' to afile name (remembering to use the *-force' option if the
origina file name is chosen), and an intact copy of the document which was
being edited when the “crash’ occurred is recreated.

Note that - is a much more convenient method of saving files!

126 OPS |ssue 1

8 Linker

8.1 Introduction

8.1.1 Context

This chapter describes the Acorn 32000 Linker. The linker is a utility
program which runs under the Panos operating system, and is used to
combine compiled object files with object libraries to produce an executable
program image file, for execution under Panos.

8.1.2 Basic Functions

The command line necessary to invoke the linker begins with the word

link and is followed by various arguments. In atypical example, the linker
must be informed of the names of the AOF files (see later) to be linked and
the names of the libraries to be used. By default, the name of the image
(RIF) file to be produced is derived from the name of the first object file
specified. This behaviour may be over-ridden by explicitly providing a name
for the image file, following the keyword -image (described in more detail
later).

Suppose a program is written in FORTRAN 77 and has two components,
held in source form in the files front-f77 and back-f77. These have been
separately compiled to produce the files front-aof and back-aof, and are to
be linked with the FORTRAN 77 library. It is desired to call the resulting
image file Test-rif. The command necessary to perform this operation is:

-> link front,back f77 -image Test

The linker will look for files front-aof and back-aof, and will link them with
the library identified by “f77', producing (if there were no errors) an image
file called Test-rif. (The linker's exact treatment of the argument T77' is
explained in the section on libraries below.) Note that the linker supplies the
appropriate extensions (-aof, -lib, -rif) if the user does not state them
explicitly.

OPSlssue 1 127

Chapter 8

In common with all commands, lists containing more than one element
have the elements separated by commas, and parts of the command are
separated by spaces.

If no image file name is mentioned, the first name in the aof file list is used,
with its own extension (normally -aof) removed, and -rif appended instead;
i.e. in the example, it would be called front-rif, if the -image option had not
been given.

A number of further options are available; these are described later.

8.1.3 Conventions in this Chapter

Interms of syntax, the basic command line of the previous section could be
written as.

LINK aof file list (f-LIBRARY) library list) (-IMAGE file name)

In this chapter, parts of the command which are optional are shown in
braces, (and |. Parts given in upper-case are literal text, i.e. they
correspond to items which should be supplied as shown; partsin lower case
correspond to general classes of items of which the user must supply a
specific value. For instance, the keyword -IMAGE should be supplied (if
required) exactly asit appears in the specification (although the case of
lettersin the actual command is not significant), whereas for the item “file
name', the user should supply an actual file namein this position.

8.1.4 Organisation of this Chapter

The basic functions have already been introduced. For many users, these
will be sufficient. Advanced functions are described later. Before that are
the concepts behind linking, and details of the linker organisation and
start-up. The linker uses the standard command language, and isinstalled
as part of Panos, so no special treatment is required for these topics.

128 OPS Issue 1

Linker

8.2 Concepts

8.2.1 Linking Model

The normal sequence of program development using a compiled languageiis:

Stage Action Utility Generates (e.g.)
! Prepare the source editor prog-pas
2 Compile the program compiler prog-aof
3 Link with libraries linker prog-rif
4 Run the program image

The third stage, linking, isrequired in order that references to objects
defined outside the main program unit may be resolved, i.e. all the
procedures, functions and data structures provided by the run-time system,
user libraries and Panos which are made use of, either directly or indirectly,
by the program. These will normally include language-specific procedures
for such things as input/output, storage allocation etc.

In addition, some languages (e.g. C, FORTRAN 77) permit the separate
compilation of sections of a user's program, and the individual modules so
generated also need to be combined in the same process to form a complete
program. Each object referenced from the main program will residein a
module which may itself refer to other objects, and so on, so the linker has
to perform a complete analysis of all these cross-referencesin order to
determine which modules are required in the final image.

Different languages have various ways of declaring items as being external.
For example, extended Pascal provides IMPORT' and "EXPORT"
qualifiers, and the “extern’ specifier isused in C. In some cases areferenceis
implicit - for example, aW r i t el n statement in Pascal may reference a
number of routines in the Pascal library to perform output. Thisillustrates
that even programs which don't explicitly import items have to be linked. In
fact all programs will normally make reference to some external facility
provided by Panos, but even those few which do not still have to be linked
in order to produce a program image in the correct format for running
under Panos.

OPS Issue 1 129

Chapter 8

8.2.2 Linking under Panos

The compilers and assembler provided with Acorn 32000 products generate
output filesin what is known as Acorn Object Format (AOF). Thisisa
standard form of representation which includes (amongst other things)
information relating to external references and definitions, and descriptions
of the contents of code and data areas.

Filesin AOF cannot be executed themselves, since as described above,
external references have to be resolved, and program images loaded and run
by Panos arein adifferent format designed for this purpose.

The action of the Acorn linker isto take input from AOF files (which
normally have the extension “-aof) and library files (extension *-lib") and
resolve all the references. All of the modules required in the final image are
combined together, and the result is afile in Relocatable Image Format
(RIF) (extension "-rif) which may be executed under Panos.

Of the language systems supplied with 32000 system, four (1SO Pascal, C,
FORTRAN 77 and the Acorn 32000 assembler) require the use of the
linker. In fact the assembler may be used to produced absol ute or
relocatable code which does not have to be linked if it isto be run directly
under Pandora rather than Patios; usually though, the assembler is used to
implement small efficient procedures which can be called by time-critical

sections of programs written in, say, Pascal or FORTRAN 77.

8.3 Linker Organisation

8.3.1 Installation
The linker is supplied with Panos. It should have been installed along with

the Patios system during the installation procedures described in the User
Guide supplied with the system.

130 OPSlssue 1

Linker

8.3.2 Global Variables

A number of global variables affect the behaviour of the link command.
These are generally set during the execution of the !Panos command file, in
which suitable default values are used. However, the user may wish to
customise the environment, for example to a FORTRAN only system.

The effect of theindividual global variables are described elsewhere in this
chapter, but are listed below for reference:

Link$Lib 852
Link$Lib_List 85.2

8.4 Command L anguage
The simplified version of the link command given in the first section is

sufficient for many purposes. However, there are severa other options
which may come in useful.

8.4.1 General Form

The full syntax of the command is:

LI NK [(- OBJECT) aof file list(-aof)) [8.5.17
| (- LI BRARY) library list(-1ib)) [8.5.27
| - FORCE aof file list(-aof)) [8.5.37
[-1 MAGE image file name(-rif)) [8.5.51
-VIA control file(-1nk)) [8.5.41
-1 SHORT) VAP [map file name(-map))) [8.5.61
| - ABSOLUTE) [8¢5¢7]
| - BASE addr ess) [8.5.87
- NOTRANSLI B) [8.5.2]
|- NOLI BLI STI [8.5.21
[- | DENTI FY) [8.4.27
| -HELP) [8.4.27
| - ERROR error stream [8.4.27

OPS Issue 1 131

Chapter 8

Again, braces, t and 1 surround optional items. Text shown in upper-case
denotes literal items to be supplied, and lower-case words denote classes of
object. Default file extensions are given in parentheses.

Arguments

[[IDENTIFY]
Displays version identification information. See 4.9.1.

[-HELP]
Displays alist of options. See 4.9.1.

[-ERROR]
Redirects error output. See 8.6 and 4.9.1.

The remaining arguments are described later in this chapter. In the above
general form, numbersin brackets | | identify the section which explains
the corresponding option.

8.4.2 Examples

Some examples of link commands (explained in full later) are:

-> link MyProg
> link fProg f77

> link fGapb f77,PlotLib

-> link cProg c, pas

> [ink MyProg, Mysubl, MySub2 f77, Pl otLib, M/Lib
> link -via Sort

>

link gentest pas -image gent

8.5 Advanced Functions

8.5.1 Object Files

At least one file specified as an object file (or forced file, see section 8.5.3) is
always required by the linker. Normally alist of one or more object filesis
provided on the command line (or in a control file, see section 8.5.4). The
list may optionally be preceded by the keyword -object. Any file name given

132 OPS Issue 1

Linker

which does not include an explicit extension isassumed to have the
extension -aof. Thelist may be specified using exact pathnames and/or
wild-card specifications. The linker will processthefilesin the order given:
for wild-card expansionsthe order isdetermined by the facility in Panos
responsible for this, but typically it will be alphabetical for filesin the same
directory.

Examples of values of the aof filelist argument are:

fred singlefile

fred, jim, nfs.stage2.sheila list

2.FPSUB?? wild-card specification
main,dl,s2,s3?, adfs:$.sim.f*, adfs: $.sim2.fx* compound

Module Loading

A module contained in an object file specified asa simple object file (or in a
library file which thelinker requiresto search) will only beincluded in the
final imageif it defines either the main entry point or a global object (i.e. a
symbol or common area) required to satisfy areference from the main
program or another required module. See section 8.5.3 concer ning the
ability to force all modules in afileto be loaded, whether or not they are
logically required in the final image.

8.5.2Library Files

The second list of names, which is optional and may if desired be preceded
by the keyword -library, identifiesthe librariesto be searched in the linking
operation. Most compiled languages have their own librarieswhich must be
linked with a program produced by the corresponding compiler. In
addition, the user may have a personal library of standard routines, and the
Panoslibrary existsto provide the basic facilities such as /O and store
allocation which all the language libraries makereferenceto. Proceduresin
the Panoslibrary may also bereferred to directly by user programs,
provided that the language concerned per mitsthis.

The syntax of thelist of library namesissimilar to that for thelist of object
filesdescribed in section 8.5, i.e. files may beidentified by simple
pathnames, by wild-card specifications, or a comma-separ ated list of any

OPSlssue 1 133

Chapter 8

combination of these; the default extension applied to alibrary filenameis
-lib. All files so specified must exist, even if they are not actually required to
complete the link operation.

Symbolic Naming

Symbolic naming may be used to automate the command. In addition to
accepting file name specificationsin thelibrary list, thelinker providesa
mechanism (which may be disabled see later) whereby alibrary may be
given a symbolic name: if when alibrary nameisencountered, it isasimple
name (i.e. anamewith no directory, drive or filing-system components),
and no explicit extension has been provided, then the linker will first check
if alibrary of that name (with -lib appended) existsin the current directory.
If one doesthen that file will be used. Otherwise the linker will check for
the existence of a global string whose nameis of the form

‘Link$Lib; <name>', where < name > isthe simple library name provided.
If thereisno such string then an error isgenerated; if thereisonethen its
valueisinterpreted asidentifying alibrary file or group of library files.

The permitted syntax of the string value isthe same asthe syntax of a list of
library files (as above) except that no attempt ismadeto translate a simple
name via the symbolic name mechanism, and hence a symbolic name may
not be recursively defined. The main purpose of symboalic library namingis
to permit easy referenceto frequently used libraries (e.g. the language
librariesfor each compiled language) - it is only necessary to remember the
symbolic name of such alibrary, rather than itsfull pathname, in order to
includeit in thelinking operation.

Examples of values which might be set up for symbolic names (typically in
the!Panosinitialisation command file) are:

$ set var Link$Lib: pas "$. PanosLi b. pas"

$ set var Link$Lib:f77 "DFS::2.f77"

$ set var Link$Li b: BBCSound ":2.soundl, : 3. sound2"

$ set var Link$Lib: graphics "NFS: $. PanosU i Ls. Graphi cs”

These would then be used by referring, in the context of alibrary list, to
‘pas, f77', " BBCSound', and “graphics.

134 OPS Issue |

Linker

Standard Libraries

In addition to any libraries given on the command line or in a contral file,
the linker will look for alist of libraries specified in the global string
‘LInk$Lib-list" (unless this function has been disabled - see later). This
enables the programmer to specify, in advance, a standard set of librariesto
be searched, avoiding the necessity of including them in the command line
each time the linker is used. For example, executing the command:

set var link$lib_list '$.PanosLib.Panos,pas’

will cause the library file $.PanosLib.Panos-lib, and the library identified by
"pas (typically asymbolic name) to be used automatically during each link.
The syntax of the value of this global string is exactly the same as for the
library list argument on the command lineg, i.e. alist of one or more
symbolic names, pathnames or wild-card specifications, with multiple list
elements separated by commas. The linker checks for the existence of this
variable, and any files named in it, after it haslooked for all other libraries
explicitly named in the linking operation.

The order of search isimportant when using libraries, as once a symbolic
reference is satisfied from one library, it will not be searched for in another
library. The order is: first any libraries specified in a -viafile are searched,
then any libraries given on the command line, and finally the link$lib-list
global string (if it has been defined) is used. In each case the library order is
that in which the libraries occur in the list, and for wild-card specifications
the order is determined by the Panos wild-card filename expansion
procedures.

Disabling Symbolic Library Names

It may be desirable in some circumstances to prevent the linker from
attempting to treat simple library names as symbolic ones. If thisisthe case
then including the state keyword -nolibtrans on the command line will have
the required effect, i.e. the linker will assume that all names given in the
context of alibrary list are actual file names.

OPS Issue 1 135

Chapter 8

Disabling Standard Library Searches

It may be required that, for whatever reason, the list of standard libraries
named in the global string Link$Lib-Jist should not be searched by the
linker. It is possible to achieve this effect, by including the state keyword
-noliblist in the link command line; thisis obviously preferable to the
alternative method which involves deleting the global string altogether.

8.5.3 Forced Files

A given input module will only be included in the imagefileif itis
necessary to load that module to satisfy a symbolic reference of some sort. If
it isdesired to ensure that all modulesin afile or set of files are to be
loaded, the keyword -force may be given on the command line, followed by
alist of object files. All modulesin the specified files will be included in the
image file. The permitted syntax of this (aof filelist) argument isidentical to
that for ordinary object files (see section 8.5.1). Thisfacility is provided to
handle the situation where a particular program or language system uses a
non-standard internal linkage mechanism which does not involve direct
symbolic references.

8.5.4 Control File

In some circumstances a large number of files may require to be linked
together, such that it may not be convenient (or even possible) to enter all of
the names on a single command line. This could ariseif, for reasons of
modularity and maintainability, alarge program is being developed which is
built out of a number of small, separately compiled units. In this case it
would be tedious and error-prone to have to type all the object file names at
every linking operation in the development process.

To eliminate thiskind of problem, afacility is provided whereby afile may
be prepared which contains the names of the files to be linked together, and
the linker will read the names from this file rather than requiring them all
to be present on the command line. The fileisin a straightforward textual
format, and may be prepared by the use of the standard Panos editor. The
syntax of the file contentsis given as:

136 OPS|ssue |

Linker

((-OBJECT) aof file list(-aof))
(-FORCE aof file list(-aof))
1f-LIBRARY) lib file list(-lib))

The actual contents of the file may be split across a number of lines
separated by the standard newline character NL (ASCII LF, value 10);
provided that the break does not occur within afile-name or keyword. The
newline character istreated as a space for purposes of parsing the file. The
syntax of thefile list arguments is exactly the same as for the equivalent
arguments on the command line itself, as detailed in the corresponding
sections below.

Note that if the -VIA option is given on the command line, it is not
necessary for any object or library file namesto appear on it, but if they do
then they will be processed after the file lists given within the control file,
i.e. each complete set of object files (ordinary and/or forced object files, and
library files) will be made up of the appropriate arguments from the control
file followed by any corresponding arguments from the command line. The
order of processing of the two sets however remains the same, i.e. all object
files are processed before any library files.

An example of alink command using this option might be:
-> link -via Sort
where the file Sort-1nk contains the following lines:

Sort, SortSubl, SortSub2, 10.Forms, 10.Block, 10.vVDUControl,
FileQutput,

Filelnput, Verify, Compare

-Library Pascal, DBLib?

8.5.5 Image File

The final output from the linker is arelocatable image format (RIF) file. If
the -image keyword is not present in the command line, the output will be
placed in < obj 1 > -rif, where < obj 1 > isthe name of the first file specified
as an object file (or aforced file if there are no ordinary object files).
Alternatively, the user may explicitly supply a name to be used by preceding
it with '-image'. For example

OPS Issue 1 137

Chapter 8

-> link gentest pas -image gent

will place theimage file in gen2-rif The default extension -rif will be used
unless the supplied name includes an extension.

8.5.6 Producing aLink Map

The linker can be made to produce a map of theimage file. Thisis atextua
(read/printable) file containing details of the internal structure of the image,
including the values of the global symbols defined within it. Two types of
map are available, afull one which gives details of the various store areas,
modules and symbols used, and a shorter version which omits the area and
module information.

A map is produced by including one of the keywords -map or -shortmap on
the command line. If thisis followed by the name of afile or device, the
map output is sent there. (For file output, the extension -map is added to
the name unless it already has an extension.) Otherwiseit is sent to

< image > -map, where < image > is the name of the image file without its
-rif extension.

8.5.7 Absolute Images

As already mentioned, the normal output file of the linker isafilein
Relocatable Image Format. Thisis suitable for loading and execution of the
file under the Panos operating system. A feature of thisformat isthat aRIF
file may be loaded and run at any address. Further, references to Panos
facilities may be made symbolically, to be resolved at load time. This
ensures that a program developed under one configuration of Panos will run
under another.

The .aternative is to make the linker produce an absolute file (with the
extension -abs) which will load and run at one address only. Such afileis
suitable for execution under Pandora, not Panos, and no reference may be
made to Panos facilities. Thisislikely to be practicable only with assembler
language code.

An absolute output fileis created by giving the keyword -absolute in the
command line. By default, the loading and execution address of the -absfile
is 16-00, suitable for loading under Pandora. The keyword -base
(described in section 8.5.8) may be used to set a different address.

138 OPS Issue 1

Lima

8.5.8 Base Address Specification

As mentioned in section 8.5.7, it is possible for the linker to produce an
absolute format image rather than arelocatable one. In this case the
keyword -base may be used to set the absolute base address for such afile; if
it is supplied then absolute mode is assumed (i.e. it isasif the keyword
-absolute had been specified). The keyword -base should be followed by a
cardinal number, eg 1024, 16-.000, which isthe desired address where the
image should be loaded: the linker structures the image so that thisis also
the execution address.

8.6 Feedback and Errors

8.6.1 Redirecting Error Messages

If the linker failsto resolve all the required references, or for any other
reason does not successfully complete the linking operation, error messages
will be produced. In common with other Panos utilities (see 4.9.1) these are
normally sent to the special stream “error:' (the screen by default), but by
giving the keyword -error followed by the name of afile or device (e.g.
printer:), they may be redirected to the named destination.

Note that error messages relating to the non-existence of files, and any other
problems associated with the command line arguments themselves will not
be re-directed in this way; the mechanism is principally of usein the
diagnosis of problemsto do with global symboals, e.g. unsatisfied references
and multiple definitions.

OPS Issue 1 139

9 Problems

This brief chapter lists a number of common problems in using Patios, that
may confront the user, and suggests possible remedial action.

See also section 7.8 which describes editor-specific problems, and the User
Guide supplied with the system which describes problems relating to
hardware, and to installation.

Open Files

If amessage of the form:

Fil e al ready open

appears, particularly if it has been necessary to make an emergency exitto a
program (e.g. by switching the machine off), then it is possible that one or
more files have been |eft open. Type:

-> star close

Disc Full

If amessage is displayed stating that the disc (Floppy or Winchester) isfull,
try deleting unwanted files. Particularly with floppy discs, it may be
necessary to compact (i.e. move parts of the disc into a contiguous area).
Thisis achieved in Panos by ensuring that the drive to be compacted isthe
current working drive, and then using a star command:

-> set dir dfs::1

-> star conpact

BBC Text Files

BBC Microcomputer text files use a different (and non-standard) end of line
character. If it isdesired to transfer text filesto or fromaBBC
Microcomputer, these characters should be converted. See 7.7.2 for one
solution.

OPSlssuel 141

Chapter 9

Trouble Reading Floppy Discs

There are severd different floppy disc formats available for the BBC
Microcomputer, and Acorn Cambridge Workstations. In the former case
these include 40 or 80 track, single or double sided, single (FM) or double
density (MFM), and DFS or ADFS. Discs of one format will not be read if
adifferent format is expected. Thisis a potential cause of trouble.

Floppy Disc Performance

If files appear to be read or written slower than might be expected from or
to floppy disc, or alternatively the disc does not operate at all, it may be that
the drive parameters are incorrectly configured. Panos is supplied with the
IConfig file set for fast speed drives, although a slow version is provided
also. See the Configure command for details.

Trouble Printing

If no output appears on a printer although data have been sent to device
printer:, it may be that the printer is not configured properly. See the
Configure command for details.

Trouble Porting Programs

There are of course many possible difficulties. One frequently occurring
oneissimply caused by the incorrect use of options with the compilers. For
example, the Pascal compiler accepts strict |SO Pascal only by default. If
language extensions are required, the -extend option must be used.

Trouble Configuring on Econet

The speed of the network may be too high for this application. Alternatively
too many users may overload the network. The network traffic will be very
different with this application than for others using BBC Microcomputers
where program size is much smaller. Contact your supplier for advice.

142 OPS Issue 1

Problems

Lost Prograns or Data

Computers are generally very reliable, and users are generally very careful.
Nevertheless, important files are sometimes lost through accident. Y ou
have been warned! Keep backups!

OPS Issue 1 143

Appendix A

Table of Editor Character Codes

The table represents the mapping between keystrokes and character codes.
Toinsert agiven code, type crrL - \ followed by the key combination
for that code.

Abbreviations
RET RETURN
SPC SPACE
S+HL SHI FT LOCK
DEL DEL TE
CPI' COoPY
LFT Left arrow
RHT Right arrow
DWN Down arrow
upP Up arrow
S&C SHFT -CTRL
C CTRL
S SHFT FT
ESC CAPE

OPS Issue 1 145

X0 | X1 Ix2 |0 Ix4 Ix5 Ix6 | x7 | x8 Ix9 I XA Ix8 I xC IxD I XE I xF |

ox| @ Al B| C|D|E|] F| G1H11]| J1K]| L|RET
/' c1 crclrciclrclrcirctircrcircirctrciicilcl
Ix 1P| Q| R| S1TI U| V1IW| X| Y| zZ]|] [| \V] 1] 1_]
I cr crclrclrclrcircilrcliclrcircticltclclcic]|
2x | SPQ Pl gl 1 Z &)y o+ - /1
l's| SI'sl sl SI SI SI S1 S| sl s! | | |
3x | 0] 112|314 5| 6] 7| 8191:1; | <|=1>]|721I
| | | | | i | | | | SI1 SI Sl s
4x|@ A B CLD E F| GIH| I |J] K| L|] M| NJ]O]|
I S+LI S+LI S+LI S+LI S+LI S+LI S+LI S+LI S+L! S+L| S+LI S+LI S+LI S+L| S+LI S+LI
5 | P| Q] R| S| T|] U| V1IW| X| Y] zZ| C1\ 111 1_1
| S+LI S+LI S+LI S+LI S+LI S+LI S+LI S+LI S+L| S+LI S+LI | |
6X|'1a|blc|d|e1flglhlilj\k|L1m1n|01
| s1 | | | | | | | | | |
x| pl q|l r | sl t]ulvIiw]|x]|]y2lz]| (]I]) 1_!!DELI
| | | | | ! ! I l's1 s1 s1 S! I
8x IfOo If1 If2 1f3 1f4 1f51f6 If7 1f8 1f9 ! TABI CPYILFTI RHTI DWNI UP !
! | | | ! | ! | | | |
Ix IfOo If1 1f2 1f3 1f4 1f5 1f6 If7 1f8 If9 | TABI CPYI LFTI RHTI DWNI UP !
S!I'slI st st sI S!Sl slI sSI S!'sl SI sl s! sl s
Ax IfOo If1 1f2 1f3 1f4 1f5 1f6 1f7 1f8 If9 ! TABI CPYI LFTI RHTI DWNI UP |
I ¢crcrclrclrctrcrcir1clrctcrcirctrcltctctcl
Bx IfO If11f2 1f3 1f4 1f5 1f6 If7 1f8 1f9 ! TABI CPYI LFTI RHTI DWNI UP !
| S&CIS&CIS&CIS&CIS&CIS&CIS&C!IS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CI
Cx ! M ! RETI RETI RETI ESCI ESCI ESCI ESCI 0 | DELI DELI DELI @ |SPCl SPCI SPCI
I Cl s! Ccls&d 'S ClIs&l C! S! ClIS&l s ! s! Cls&d
DO L] 2]3[4][5[6]7]8]9]:1I ; =1 .| 2!
| S+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CIS+CI
Ex| 0 0 Al 81C| D| E|] F1G| H| 1] JI K| LI M1IN]| 0]
| S&CIS&C!IS&CIS&CIS&C!IS&C!IS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CI
Fx | P| Q] R1S| T|] U| VI WI X| Y] ZlICl\ | 111 _1

146

I S&CIS&CIS&C!IS&CIS&CIS&C!IS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CIS&CI

OPS Issue 1

Appendix B

Bibliography

Panos Programmer's Reference Manual
Acorn Computers Ltd

Part Number 0410,012

Issue 1 1985

Cambridge Co-Processor User Guide
Acorn Computers Ltd

Part Number 0410,000

Issue 1 1985

BBC Microcomputer User Guide
British Broadcasting Corporation
1982

The Advanced User Guide for the
BBC Micro

Bray, Dickens and Holmes
Cambridge Microcomputer Centre
1983

OPS Issue 1

Disc Filing System User Guide
Acorn Computers Ltd

Part Number 0403,700

Issue 2 1983

Econet Level 2 File Server
User Guide

Acorn Computers Ltd
Part Number 0412,018
Issue 1 1983

Winchester Disc Filing System
User Guide

Acorn Computers Ltd

Part Number 0427,000

Issue 1 1984

BBC Microcomputer User
Guide

Acorn Computers Ltd
Part Number 0433,000
Issue 1 1984

147

I ndex

A

Acorn Object Format 130
Argument decoding 45
Argument group 32
Argument string 32

B

bbc: 10

Block operations 112
Buffer 96, 99, 121
Built-in commands 39

C

Case 95

Cli$echo 42
Clock 104
Command file 41
Command line interpreter 27
Commenting 39
-Confirm 52
Control stream 51
Copy block 112
Cursor 95

Cursor keys 105

D
Delete block 112
DFS 97

E
-Error 5/
Error messages 51

F

-File 99

File extensions 54
Filing system 22
Function keys /07

OPS Issue 1

G
Global variables 18

H
-Help 51
Help information 98

|

1/O processor 22
Image file 127
Input 10

I nput/output 8

K

Kb: 9
Keyboard 9
Keyword 33

L

Library files 130
-Line 99

Line number 99
Line width 103
Linker 127

M

Macro 119
Marker 112
Move block 112

N
Newline characters 106
Null: 10

O

-Obey 99

Object files 127
Object libraries 127
Option specifier 46
Output 10

149

P
Pandora 22
Parameter substitution 45
Patterns

replace 117

search 114
Position indicator 103
Printer: 10
Program 51, 52, 58
Prompt 30

R

Rawkb: 10

Rawvdu: 9

Relocatable Image Format 130
Replacement patterns 117
RS423 10

Run-time system 129

S

Screen mode 100
Search patterns 114
Serial line 10
Sys$time 30
Sys$date 104

T
Tabulation 95
TT: 10

\Y/
Vdu: 9
-Verbosity 51

w

Welcome disc 94
Windows 121

150 OPS Issue 1

